面向方面情感三元组抽取的配对信息增强方法与可假设逻辑程序的最小否定模型语义
在自然语言处理领域,方面情感三元组抽取(ASTE)和可假设逻辑程序(ALP)是两个重要的研究方向。本文将介绍一种用于ASTE的配对信息增强方法,以及ALP的最小否定模型语义。
面向方面情感三元组抽取的配对信息增强方法
- 训练 :该方法将损失函数组合形成损失目标,公式为 $L = αL_e + βL_c$,其中 $α$ 和 $β$ 是标量超参数。
-
实验设置 :在ASTE - Data - V2数据集上进行评估,该数据集包含餐厅领域的三个数据集(14res、15res和16res)和笔记本电脑领域的一个数据集(14lap)。这些数据集最初来自SemEval挑战。数据集统计信息如下表所示:
| 数据集 | 训练集(□, ◦, ♥, ♦) | 验证集(□, ◦, ♥, ♦) | 测试集(□, ◦, ♥, ♦) |
| — | — | — | — |
| 14lap | 906, 265, 274, 178 | 219, 59, 69, 42 | 328, 103, 111, 70 |
| 14res | 1266, 533, 557, 429 | 310, 123, 132, 98 | 492, 228, 245, 187 |
| 15res | 605, 183, 239, 155 | 148, 49, 64, 41 | 322, 82, 98, 68 |
| 16res | 857, 244, 319, 210 | 210, 65, 77, 50 |