46、可假设逻辑程序的最小否定模型语义解读

可假设逻辑程序的最小否定模型语义解读

1. 稳定模型语义

在可假设逻辑程序(ALP)中,其非正式解读包含两种结果:可接受的文字假设和被相信的原子。被相信的原子集合是 $HB(\Pi)$ 的子集,而可接受的假设集合是 $AB(\Pi)$ 的子集。基于此,ALP 程序的解释定义如下:
- 解释(Interpretation) :设 $\Pi$ 是一个有限的 ALP 程序,$\Pi$ 的一个解释 $I$ 是一个元组 $(X, A)$,其中 $X$ 称为信念集,是 $HB(\Pi)$ 的一致子集,$A$ 称为可接受的假设文字集或简称可假设集,是 $AB(\Pi)$ 的一致子集。
- 满足(Satisfaction) :设 $(X, A)$ 是一个解释:
- 对于一个基原子 $p$,若 $p \in X$,则 $(X, A)$ 满足 $p$,记为 $(X, A) \vDash_A p$。
- 对于一个基文字 $\neg p$,若 $p \notin X$,则 $(X, A) \vDash_A \neg p$。
- 对于基假设 $Cp$ 和 $\neg C\neg p$,若 $p \in A$,则 $(X, A) \vDash_A Cp$ 且 $(X, A) \vDash_A \neg C\neg p$。
- 对于基假设 $C\neg p$ 和 $\neg Cp$,若 $p \notin A$,则 $(X, A) \vDash_A C\neg p$ 且 $(X, A) \vDash_A \neg Cp$。
- 对于基文字和假设的合取 $T$,若 $(X, A)$ 满足 $T$ 中的所有文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值