m0n1o2p
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
47、MT-BICN:用于推荐的多任务平衡信息级联网络
随着电子商务的快速发展,信息过载问题日益突出,推荐系统成为解决这一问题的关键工具。本文提出了一种新颖的多任务平衡信息级联网络(MT-BICN),旨在通过平衡任务性能的同时显式建模任务之间的序列依赖关系。MT-BICN通过引入特定任务专家、共享专家以及信息转移单元(ITU),解决了传统方法中任务冲突和信息传递受限的问题。实验结果表明,MT-BICN在多个推荐任务中均优于主流多任务学习方法,验证了其有效性与创新性。原创 2025-08-30 02:21:06 · 23 阅读 · 0 评论 -
46、可假设逻辑程序的最小否定模型语义解读
本文深入探讨了可假设逻辑程序(ALP)的两种核心语义——稳定模型语义与最小否定模型语义。通过引入假设约简与反向约简的概念,详细阐述了稳定模型的构成条件及其三大推理原则:满足原则、一致原则与理性原则。同时,文章提出了最小否定模型语义的形式化定义,并分析其与稳定模型之间的对应关系。通过反向约简,能够追踪导致假设否定的不一致性,并为否定假设提供理由。文章还通过示例和流程图对比了两种语义的关键概念与推理过程,探讨了其在实际应用中的适用场景。最后,研究指出未来可进一步开发基于反向约简的新算法,并拓展ALP的有根据语义原创 2025-08-29 15:24:58 · 22 阅读 · 0 评论 -
45、面向方面情感三元组抽取的配对信息增强方法与可假设逻辑程序的最小否定模型语义
本文探讨了自然语言处理中的两个重要研究方向:面向方面情感三元组抽取(ASTE)的配对信息增强方法和可假设逻辑程序(ALP)的最小否定模型语义。针对ASTE任务,提出了一种基于对比学习的配对信息增强方法,通过引入对比学习目标,显著提高了配对准确性和三元组提取性能,并在多个数据集上优于现有基线方法。同时,研究了ALP的最小否定模型语义,为基于逻辑的智能代理提供了新的推理方式和语义解释。最后,文章展望了这两种方法的未来研究方向和应用前景,包括商业评价分析、舆情监测、智能决策系统等领域。原创 2025-08-28 13:39:58 · 22 阅读 · 0 评论 -
44、学术研究前沿:引文推荐与方面情感三元组提取的创新方法
本博客探讨了两个学术研究前沿方向:一是基于知识图谱和多任务学习的引文推荐方法,通过构建论文知识图谱并进行特征共享和联合学习,显著提高了引文推荐的泛化性能;二是方面情感三元组提取(ASTE)的配对增强方法,利用对比学习优化方面和意见之间的配对过程,有效解决了传统方法在多方面或多意见句子中的匹配难题。研究通过实验验证了配对增强方法在多个ASTE数据集上的优越性能,并分析了其在学术推荐和评论情感分析中的实际应用潜力。原创 2025-08-27 11:30:31 · 24 阅读 · 0 评论 -
43、基于知识图谱和多任务学习的引文推荐模型
本文介绍了一种基于知识图谱和多任务学习的引文推荐模型(KMCR),旨在解决现有方法在挖掘论文属性不足和引入知识图谱时容易过拟合的问题。该模型通过引文推荐任务模块、知识图谱链接预测任务模块和特征共享模块的协同工作,融合论文的交互特征和文本特征,实现高效的引文推荐。实验结果表明,KMCR 模型在多个评估指标上优于基线模型和变体模型,证明了其有效性和优越性。原创 2025-08-26 10:58:29 · 19 阅读 · 0 评论 -
42、基于用户反馈与知识图谱的推荐技术研究
本文探讨了两种推荐技术的研究与应用:基于用户反馈的反事实数据增强推荐方法 UFC4SRec,以及结合知识图谱和多任务学习的引文推荐模型。UFC4SRec 通过生成高质量的反事实数据提升推荐性能,在多个数据集上验证了其有效性;而基于知识图谱的引文推荐模型利用多任务学习和知识图谱信息,显著提高了学术引文推荐的准确性和相关性。两种技术分别在电商推荐和学术推荐领域展现出良好的应用前景。原创 2025-08-25 11:49:49 · 13 阅读 · 0 评论 -
41、用户反馈驱动的序列推荐反事实数据增强方法解析
本文提出了一种基于用户反馈的反事实数据增强方法(UFC4 - SRec),用于解决序列推荐任务中的数据稀疏问题。通过反事实生成器生成干预后的用户反馈数据,并结合模仿强化学习的奖励机制优化生成过程,从而提升推荐的准确性。实验表明,该方法在三个真实数据集上均显著提高了推荐性能,为序列推荐任务提供了一种有效的解决方案。原创 2025-08-24 12:15:27 · 21 阅读 · 0 评论 -
40、基于多任务学习的皮肤分割算法研究
本文提出了一种基于多任务学习的皮肤分割算法,通过结合人像分割任务和皮肤分割任务的相似性和互补性,提高了分割性能。该方法采用编码器-解码器架构,利用动态卷积和蒸馏模块提取任务相关特征,并引入多头注意力机制促进任务间的信息交互。实验结果表明,该方法在多个数据集上优于现有皮肤分割方法。原创 2025-08-23 12:06:38 · 21 阅读 · 0 评论 -
39、利用非负矩阵分解融合高阶信息进行社区检测
本文提出了一种结合高阶图注意力编码器、图互信息和基于 NMF 的社区互信息的新模型 HGI-NMF,用于提升社区检测性能。通过引入高阶图结构信息以及图级和社区级互信息最大化策略,模型在多个真实数据集上均表现出优于现有方法的社区检测效果,验证了高阶信息与社区信息联合建模的有效性。原创 2025-08-22 13:14:49 · 18 阅读 · 0 评论 -
38、基于TGKT - RL的个性化学习路径推荐与高阶信息融合的社区检测方法
本文介绍了两种基于机器学习的创新方法,分别应用于个性化学习路径推荐和社区检测领域。基于TGKT-RL的模型利用强化学习框架,通过知识追踪网络(KTN)和学习路径推荐网络(LPRN)为学习者推荐个性化学习路径,并设计了综合奖励机制以提升推荐效果。实验表明该方法在多个数据集上优于随机和贪心算法。另一方面,融合高阶信息的HGI-NMF方法通过多跳图注意力编码器、图级和社区级互信息优化,提升了传统非负矩阵分解在社区检测中的表现,能够更准确地识别复杂网络中的社区结构。未来的研究方向包括多任务强化学习在教育中的应用以及原创 2025-08-21 12:02:43 · 20 阅读 · 0 评论 -
37、前沿技术在大数据与教育领域的应用探索
本文探讨了前沿技术在大数据与教育领域的应用。在大数据处理方面,介绍了基于人工蜂鸟模型的 Spark 程序优化器,通过操作替换和规则检测提高 Spark 程序性能。在在线教育领域,提出了 TGKT - RL 模型,结合知识追踪和强化学习,实现更精准、可解释的个性化学习路径推荐。研究展示了技术在提高效率和提供个性化服务方面的巨大潜力,并展望了未来的发展方向。原创 2025-08-20 14:14:49 · 18 阅读 · 0 评论 -
36、SPOAHA:Spark 程序优化器
本文介绍了一种基于人工蜂鸟算法的 Spark 程序优化器 SPOAHA,该系统通过对 Spark 算子进行分类,制定重排序和替换规则,并结合改进的人工蜂鸟算法对程序进行优化。实验结果表明,SPOAHA 能够显著减少洗牌数据量,提高执行效率,尤其在大规模数据处理中表现优异。原创 2025-08-19 16:42:33 · 17 阅读 · 0 评论 -
35、多层注意力社交推荐系统与Spark程序优化技术解析
本博客详细解析了多层注意力社交推荐系统(MAS-DRLRC)和基于人工蜂鸟算法的Spark程序优化器(SPOAHA)。MAS-DRLRC结合深度强化学习和注意力机制,通过异构信息网络增强用户和物品的状态表示,显著提升了推荐系统的性能,尤其在冷启动和数据稀疏场景下表现优异。SPOAHA则利用人工蜂鸟算法对Spark操作符进行重排序和替换,有效优化了Spark应用的执行效率,实验表明其可显著减少数据处理量并加快执行速度。博客还深入探讨了两种技术的实现细节与优化策略,并展望了未来发展方向。原创 2025-08-18 12:55:59 · 23 阅读 · 0 评论 -
34、基于多步长协作的时间重复计数与多层注意力社交推荐系统
本博客介绍了两种创新方法:基于多步长协作的时间重复计数方法和基于深度强化学习的多层注意力社交推荐系统。时间重复计数方法通过多步长协作和自适应相关矩阵等技术,在多个数据集上取得了较好的性能,能够准确计算视频中重复动作的次数。而多层注意力社交推荐系统通过构建异构信息网络、应用注意力机制和深度强化学习方法,有效缓解了用户反馈数据稀疏和用户与项目相互孤立的问题,为用户提供了更准确的推荐项目。尽管这两种方法都取得了一定的成果,但未来仍有改进空间,如提升计算效率、增强复杂场景下的鲁棒性以及优化个性化推荐等。原创 2025-08-17 12:06:27 · 16 阅读 · 0 评论 -
33、多路径自适应跨语言摘要与多步长协作的时间重复计数
本文探讨了两个重要的研究方向:多路径自适应跨语言摘要和多步长协作的时间重复动作计数。跨语言摘要模型通过多路径方法动态调整模型结构,实现了多语言信息的高效整合,提升了模型的可解释性和性能。而视频重复动作计数研究提出了一种基于自适应时间相关性的多步长协作框架,能够有效处理长视频中不连续和周期不一致的重复动作,同时介绍了一个更具挑战性的新数据集ActCount。这两种方法分别在自然语言处理和计算机视觉领域提供了创新性的解决方案,并展示了广泛的应用潜力。原创 2025-08-16 09:48:58 · 13 阅读 · 0 评论 -
32、基于多路径的自适应跨语言摘要生成
本文提出了一种基于多路径的自适应跨语言摘要生成方法,通过引入多路径模型进行网络路径选择,充分利用多种语言的共性和单一语言的个性,显著提升了跨语言摘要的性能。结合语言融合模块和生成融合模块的设计,模型能够动态平衡不同语言的信息,并通过上下文信息生成高质量的摘要。实验结果表明,该方法在多个数据集上均取得了优异表现,尤其在样本较少的语言上展现出强大的性能优势。原创 2025-08-15 13:05:53 · 18 阅读 · 0 评论 -
31、知识感知双流解码的中文故事生成框架
本文提出了一种基于知识感知与双流解码机制的中文故事生成框架。该框架通过引入中文常识知识,增强了生成故事的多样性;同时采用双流解码机制,有效提升了生成故事对输入大纲点的覆盖率。模型基于LongLMbase进行构建,并通过两次训练与解码流程逐步优化生成结果。实验结果表明,该框架在多项自动与人工评估指标上均优于多个基线模型,尤其在Coverage和Distinct-n指标上表现突出。未来的研究方向包括更精细的大纲点控制方法以及更高效的外部知识融合机制。原创 2025-08-14 12:17:31 · 24 阅读 · 0 评论 -
30、知识感知双流解码的中文故事生成方法
本文提出了一种基于大纲的中文故事生成框架,通过双流解码机制提高生成故事对大纲要点的覆盖率,并融合中文ConceptNet常识知识库的信息以增强故事多样性。该框架利用LongLM作为生成模型,结合语义相似度计算扩展原始大纲,并设计双流解码策略确保生成质量。实验结果表明,该方法在多个评估指标上表现优异,能够生成内容丰富且符合大纲要求的高质量中文故事。原创 2025-08-13 09:18:02 · 17 阅读 · 0 评论 -
29、对潜在重要子句进行重加权以优化部分最大可满足性问题求解
本文提出了一种改进的随机局部搜索算法SATLC,通过动态调整潜在重要子句的初始权重,优化部分最大可满足性(PMS)问题的求解。在高模块化问题实例中,SATLC能够更有效地利用矛盾信息,优先满足硬约束并提升可行解的生成质量。实验结果表明,SATLC在多个基准测试中显著优于现有求解器SATLike3.0,尤其在具有强结构组织的问题上表现突出。原创 2025-08-12 13:02:04 · 19 阅读 · 0 评论 -
28、基于候选感知注意力增强的图神经网络新闻推荐方法
本文提出了一种基于候选感知注意力增强的图神经网络新闻推荐方法(GNNR)。该方法通过结合新闻内容表示和图神经网络,全面学习新闻的文本特征和用户-新闻交互图中的高阶结构信息。利用CNN提取新闻标题特征,并通过图神经网络聚合用户和新闻的高阶邻域信息,从而提升新闻表示的质量。用户兴趣建模采用GRU和候选感知注意力机制,动态捕捉用户的兴趣变化。在MIND和Adressa两个真实数据集上的实验表明,GNNR在多个评价指标上均优于现有推荐方法。消融实验和案例研究进一步验证了模型中各组件的有效性,证明了高阶结构信息对新闻原创 2025-08-11 13:35:17 · 17 阅读 · 0 评论 -
27、基于超图增强与信息补充网络及候选感知注意力增强图神经网络的推荐系统研究
本文介绍了两种创新的推荐系统模型:超图增强与信息补充网络(HAISN)用于会话推荐,以及候选感知注意力增强图神经网络(GNNR)用于新闻推荐。HAISN通过引入全局图自监督学习通道和超图增强学习通道,解决了超图结构在会话推荐中存在的信息传递困难和噪声干扰问题。GNNR通过将高阶信息编码到新闻表示中,并设计候选感知注意力模块,解决了新闻推荐中用户兴趣建模不全面的问题。实验结果表明,HAISN和GNNR分别在会话推荐和新闻推荐任务中优于现有模型,能够更有效地提取信息,提高推荐的准确性和有效性。文章还展望了推荐系原创 2025-08-10 13:15:46 · 19 阅读 · 0 评论 -
26、跨领域推荐与会话推荐的创新方法
本文介绍了两种创新的推荐系统模型:TCLCDR和HAISN。TCLCDR通过图卷积转移层和对比学习损失函数,有效缓解了跨领域推荐中的数据稀疏性和领域差异问题,显著提升了推荐性能。HAISN则针对会话推荐中顺序信息丢失和全局信息缺乏的问题,提出了全局图自监督学习通道和超图增强学习通道,通过自监督学习优化特征表示,提高了会话推荐的准确性。两种模型均在多个数据集上进行了验证,表现出优越的推荐效果,为推荐系统领域提供了有价值的解决方案。原创 2025-08-09 14:58:55 · 14 阅读 · 0 评论 -
25、CoMeta:解决物品冷启动问题的有效方案
本文介绍了一种解决推荐系统中物品冷启动问题的新方法CoMeta。通过生成包含协作信息的理想元嵌入,CoMeta显著提升了新物品的推荐效果。该方法包含两个核心组件:B-EG(基础嵌入生成器)和S-EG(偏移嵌入生成器),分别用于捕捉旧物品的协作信息和结合新物品的属性特征进行嵌入生成。实验表明,CoMeta在多个数据集和骨干模型上均表现出色,优于现有冷启动方法,且具有模型无关性,适用于多种推荐模型。原创 2025-08-08 09:46:03 · 18 阅读 · 0 评论 -
24、多层面多兴趣用户兴趣建模与冷启动问题解决方法
本文介绍了两种推荐系统中的关键问题解决方法:多层面多兴趣用户兴趣建模方法(MMRN)和利用协作信息增强元嵌入的冷启动解决方法(CoMeta)。MMRN通过多粒度兴趣捕捉和兴趣融合,显著提升了新闻推荐的性能,而CoMeta则通过利用用户与旧物品的协作信息,有效解决了新物品冷启动问题。两种方法在实验中均展现了优越的性能,并具有广泛的应用潜力。原创 2025-08-07 09:32:35 · 18 阅读 · 0 评论 -
23、多级别多兴趣用户兴趣建模在新闻推荐中的应用
本文提出了一种多级别和多兴趣用户兴趣建模方法——MMRN模型,用于提升个性化新闻推荐的效果。该模型通过新闻编码器、词级用户兴趣编码器、新闻级用户兴趣编码器以及更高级别用户兴趣编码器等组件,从多个粒度全面建模用户兴趣,解决了传统方法在捕捉用户多样化兴趣方面的不足。实验结果表明,MMRN在推荐性能上显著优于传统方法和单一兴趣向量的深度学习方法,具有较高的应用价值。原创 2025-08-06 13:29:16 · 14 阅读 · 0 评论 -
22、FedDroidADP:自适应差分隐私保护机制助力安卓恶意软件分类
本文提出了一种基于自适应差分隐私的安卓恶意软件分类保护机制 FedDroidADP,通过隐私风险估计器 RiskMeter 和自适应差分隐私保护器 ADP,解决了现有本地差分隐私方法在联邦学习框架下隐私保护效果差和模型精度损失大的问题。FedDroidADP 在空间维度上根据梯度层的隐私风险分配分层隐私预算,在时间维度上通过梯度裁剪和噪声添加实现动态调整,从而在保护用户敏感信息的同时保持了模型的分类能力。实验结果表明,与现有方法相比,FedDroidADP 在隐私保护效果和模型效用之间实现了更好的权衡。原创 2025-08-05 15:32:18 · 18 阅读 · 0 评论 -
21、多领域对话状态跟踪与安卓恶意软件分类隐私保护技术解析
本文探讨了多领域对话状态跟踪技术和安卓恶意软件分类中的隐私保护技术。针对多领域对话系统,提出了DOLLAR模型,有效解决了跨领域槽对的相关性问题,并在多个基准测试中表现出色。对于安卓恶意软件分类,分析了传统方法和联邦学习的隐私挑战,并介绍了FedDroidADP框架,通过自适应差分隐私机制,在保护用户隐私的同时保持模型实用性。文章还展望了这两项技术的应用前景和发展趋势。原创 2025-08-04 13:13:30 · 17 阅读 · 0 评论 -
20、基于对话感知槽位级模式图的对话状态跟踪方法解析
本文介绍了一种基于对话感知槽位级模式图的对话状态跟踪方法,详细解析了DOLLAR模型的结构与实现。DOLLAR通过结合对话历史信息与槽位关系建模,在多个任务导向对话数据集上取得了优异性能。模型利用BERT编码上下文和模式信息,通过槽位-标记注意力层和模式图层的两层网络结构,有效捕捉了槽位间的复杂关系。实验表明,DOLLAR在联合目标准确率(JGA)方面优于现有基线模型,特别是在MultiWOZ 2.4数据集上表现突出。文章还分析了关键技术点、操作步骤及未来改进方向,为对话状态跟踪领域提供了新的研究思路。原创 2025-08-03 15:04:35 · 15 阅读 · 0 评论 -
19、会话推荐与对话状态跟踪技术解析
本文介绍了两种提升会话推荐与对话状态跟踪的技术方法。在会话推荐部分,提出了一种基于异质图神经网络的模型,通过构建异质图、学习会话嵌入和评分预测优化,实现了优于现有方法(如 Item-KNN、GRU4Rec 和 SR-GNN)的性能。在对话状态跟踪部分,提出了一种新颖的 DOLLAR 方法,通过构建槽位级模式图和采用两层网络,解决了现有模型在多领域对话中的槽位关系建模问题。实验表明,该方法在多个基准数据集上取得了最优性能,为相关领域的发展提供了有价值的参考。原创 2025-08-02 13:52:12 · 12 阅读 · 0 评论 -
18、融合用户评论与图神经网络的推荐系统研究
本文研究了两种改进的推荐系统方法:一种是引入用户评论的强化学习推荐系统,通过将用户评论和评分融入强化学习过程,更精准地捕捉用户偏好并提供推荐解释;另一种是基于异构图神经网络的会话推荐模型,通过结合用户的长短期偏好以及构建异构图来处理复杂关系,提高推荐的准确性。实验结果表明,这两种方法在多个数据集上均优于传统模型,具有广泛的应用前景。原创 2025-08-01 13:05:51 · 15 阅读 · 0 评论 -
17、新闻推荐与知识图谱推荐的创新方法
本文介绍了两种推荐系统的创新方法:超图增强对比学习的新闻推荐方法(HGCL)和基于强化学习并结合用户评论的知识图谱推荐方法(RKGR-UR)。HGCL通过意图交互学习和超图结构学习解决用户复杂兴趣建模问题,而RKGR-UR结合强化学习和用户评论信息,更准确地识别用户的真实兴趣。文章还分析了两种方法的对比、应用场景、未来发展趋势及挑战,为推荐系统的开发和研究提供了新思路。原创 2025-07-31 12:43:46 · 17 阅读 · 0 评论 -
16、用于新闻推荐的超图增强对比学习
本文提出了一种基于超图增强对比学习的新闻推荐模型HGCL,通过意图交互学习模块和超图结构学习模块解决用户意图识别不足和过平滑协作效应问题。意图交互学习模块在细粒度的主题层面构建用户意图,超图结构学习模块利用超图神经网络缓解过平滑问题,并实现跨视图对比学习。实验结果表明,HGCL在多个评估指标上优于现有基线模型,展现了良好的性能和优势。原创 2025-07-30 10:16:24 · 13 阅读 · 0 评论 -
15、基于GCN的协同过滤新方法:Di - GCCF解析
本文介绍了一种基于图卷积网络(GCN)的新型协同过滤方法Di-GCCF,旨在解决传统GCN在处理高阶关系和特征融合方面的局限性。通过引入交互特征融合模块和度感知嵌入,Di-GCCF能够有效缓解过度平滑问题,并在稀疏交互场景下表现出色。实验结果表明,Di-GCCF在多个真实数据集上均优于现有推荐模型,具有较强的泛化能力和应用潜力。原创 2025-07-29 09:42:16 · 15 阅读 · 0 评论 -
14、低资源文本提取式摘要与图卷积协同过滤技术解析
本文介绍了两种创新技术:ParaSum和Di-GCCF。ParaSum是一种针对低资源提取式文本摘要的对比释义方法,通过缩小模型与预训练语言模型的训练差距,有效提升摘要性能。Di-GCCF是一种基于度感知嵌入和交互特征融合的图卷积协同过滤模型,解决了现有推荐系统中固定粒度聚合和过平滑问题。两种技术在各自领域展现出良好性能,并具有广泛的应用前景,如新闻摘要、学术文献处理、电商推荐和社交媒体内容推荐等。原创 2025-07-28 11:14:36 · 14 阅读 · 0 评论 -
13、低资源抽取式文本摘要的对比释义方法
本文提出了一种名为ParaSum的新型抽取式文本摘要方法,旨在解决低资源场景下传统方法依赖大量标注数据的问题。通过将摘要任务重新表述为文本释义任务,ParaSum利用预训练语言模型(PLMs)和对比学习范式,有效区分语义显著的摘要内容。实验表明,ParaSum在多个低资源数据集上优于现有基线模型,尤其在少量训练样本下表现出色,并具有良好的泛化能力。原创 2025-07-27 12:33:51 · 13 阅读 · 0 评论 -
12、去偏对比损失用于协同过滤及低资源抽取式文本摘要的新范式
本文探讨了去偏对比损失(DCL)在协同过滤中的应用,以及ParaSum范式在低资源抽取式文本摘要任务中的表现。DCL通过自动挖掘难负实例和缓解样本偏差问题,显著提升了推荐系统的性能。实验表明,DCL在多个推荐模型中均能带来显著改进,并具有更快的收敛速度和更强的训练效率。与此同时,ParaSum通过将抽取式摘要任务重新表述为文本释义,有效缩小了与预训练语言模型(PLMs)预训练目标的差距,从而在低资源场景下取得了优越的摘要性能。两种方法分别为协同过滤和文本摘要领域提供了新的思路和解决方案。原创 2025-07-26 13:48:56 · 9 阅读 · 0 评论 -
11、文本分类与协同过滤算法的创新探索
本文探讨了两种创新算法模型在文本分类和协同过滤领域的应用。MDGAT模型通过多显示图融合、多步信息聚合以及GRU单元的引入,显著提升了文本分类的性能;而去偏对比损失(DCL)模型通过引入偏差校正概率,有效解决了协同过滤中样本偏差的问题。文章详细分析了两种模型的创新点及优势,并探讨了它们在实际应用中的前景与挑战。原创 2025-07-25 10:05:26 · 15 阅读 · 0 评论 -
10、多显示图注意力网络在文本分类中的应用
本文介绍了一种用于文本分类任务的新型模型MDGAT(Multi-Display Graph Attention Network),通过构建多显示图从语法、语义、句法和主题等多个视角捕捉文本信息,并结合多步信息聚合机制和门控循环单元(GRU)提升模型性能。实验表明,MDGAT在多个基准数据集上均取得了优于现有方法的分类准确率,尤其在处理长文本和情感分类任务中表现突出。原创 2025-07-24 13:12:07 · 15 阅读 · 0 评论 -
9、文本分类模型:MA - TGNN与MDGAT的探索
本文探讨了两种基于图神经网络的文本分类模型:MA-TGNN和MDGAT。MA-TGNN通过多聚合器和节点更新机制,在长文本和多分类任务上表现优异;而MDGAT通过融合多显示图和多步信息聚合方法,有效提升了文本分类的性能,尤其是在复杂语义任务上的表现更为突出。文章详细介绍了两种模型的结构、实验验证及对比分析,并展望了未来的研究方向。原创 2025-07-23 16:11:46 · 15 阅读 · 0 评论 -
8、中文关系抽取与多聚合器图文本分类模型研究
本文主要研究了中文关系抽取和多聚合器图文本分类模型。在中文关系抽取部分,提出了基于BC-Lattice模型的交叉注意力语义交互增强(CSI)分类器和基于上下文的加权(CPW)模块,有效解决了分词歧义和语义交互问题,并在多个数据集上验证了其优越性能。在文本分类部分,提出了一种新的多聚合器图神经网络模型MA-TGNN,通过多种聚合技术和降维拼接方法,显著提升了分类效果。实验结果表明,该模型在多个基准数据集上优于传统方法,为相关领域研究提供了新思路。原创 2025-07-22 11:17:27 · 15 阅读 · 0 评论