2、医疗信息学中的预测分析与机器学习:任务与技术综述

医疗信息学中的预测分析与机器学习:任务与技术综述

1. 医疗信息学中的预测分析简介

医疗信息学是技术与医疗保健交叉的广泛领域,旨在实现两个目标:一是让患者及其医疗服务提供者能够获取患者的医疗数据,以便及时做出医疗决策;二是管理这些数据用于教育和研究目的。该领域最早的相关文章出现在20世纪50年代,到70年代被确认为一个新的专业领域。

医疗和保健领域会产生大量高度复杂且来源多样的数据,如电子健康记录、医疗设备数据、可穿戴技术数据、手写笔记、实验室结果、处方和临床信息等。对这些数据应用预测分析,有望带来诸多好处,如提高患者的医疗标准、降低医疗成本以及提升患者对医疗服务提供者的满意度。

1.1 机器学习的目标概述

预测分析是数据科学的一个分支,它运用统计推断、机器学习、数据挖掘和信息可视化等多种技术,基于历史和/或实时数据,对系统的未来行为进行预测、建模和理解。这里主要关注机器学习算法来构建预测模型。

机器学习在自动化和计算机视觉(尤其是图像分类)方面也有应用,在某些医疗领域,其准确性已可与人类专家相媲美。近年来,深度学习在医学和医疗保健等领域取得了技术上的成功并受到科学关注。例如,卷积神经网络(ConvNets或CNNs)已成为分析磁共振成像(MRI)扫描等图像以预测阿尔茨海默病等疾病的主流方法。

不过,深度学习模型在医疗领域面临一些挑战,如数据的时效性、领域复杂性和缺乏可解释性。常见的深度学习架构包括循环神经网络(RNNs)、ConvNets、受限玻尔兹曼机、自动编码器等。这里主要关注医疗信息学的五个任务:鉴别诊断、预测、治疗推荐、治疗自动化和综合医学分析。

1.2 当前实践现状
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值