8、时间序列分析中的模型构建与验证

时间序列分析中的模型构建与验证

1 残差分析

在时间序列分析中,模型的构建和验证是确保模型有效性和可靠性的关键步骤。残差分析是这一过程中不可或缺的一部分。残差是指模型预测值与实际观测值之间的差异。对于ARMA(p,q)模型,如果模型适合数据,则残差应当很好地被建模为白噪声。具体来说,残差应满足以下条件:

  • 残差应无显著自相关。
  • 残差应大致呈正态分布,这是MLE(最大似然估计)程序的一个假设。

1.1 检查样本自相关

一种常用的残差白噪声检验方法是检查样本自相关。如果残差是白噪声,那么样本自相关系数ρk应在95%置信区间内波动。具体步骤如下:

  1. 计算残差的样本自相关系数ρk。
  2. 使用公式 (\pm 2/\sqrt{n}) 计算95%置信区间的上下限。
  3. 检查样本自相关系数是否大部分位于置信区间内。

如果显著超过5%的样本自相关系数超出置信区间,这可能表明残差并非白噪声,模型可能需要调整。

1.2 Ljung-Box检验

另一种常用的白噪声检验方法是Ljung-Box检验。该检验基于前K个样本自相关系数,检验统计量近似服从χ²分布。具体步骤如下:

  1. 选择滞后数K。
  2. 计算Ljung-Box检验统计量。
  3. 比较检验统计量与χ²分布的临界值。

如果检验统计量大于临界值,则拒绝白噪声假设,表明模型未能充分解释数据中的相关结构。


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值