时间序列分析中的模型构建与验证
1 残差分析
在时间序列分析中,模型的构建和验证是确保模型有效性和可靠性的关键步骤。残差分析是这一过程中不可或缺的一部分。残差是指模型预测值与实际观测值之间的差异。对于ARMA(p,q)模型,如果模型适合数据,则残差应当很好地被建模为白噪声。具体来说,残差应满足以下条件:
- 残差应无显著自相关。
- 残差应大致呈正态分布,这是MLE(最大似然估计)程序的一个假设。
1.1 检查样本自相关
一种常用的残差白噪声检验方法是检查样本自相关。如果残差是白噪声,那么样本自相关系数ρk应在95%置信区间内波动。具体步骤如下:
- 计算残差的样本自相关系数ρk。
- 使用公式 (\pm 2/\sqrt{n}) 计算95%置信区间的上下限。
- 检查样本自相关系数是否大部分位于置信区间内。
如果显著超过5%的样本自相关系数超出置信区间,这可能表明残差并非白噪声,模型可能需要调整。
1.2 Ljung-Box检验
另一种常用的白噪声检验方法是Ljung-Box检验。该检验基于前K个样本自相关系数,检验统计量近似服从χ²分布。具体步骤如下:
- 选择滞后数K。
- 计算Ljung-Box检验统计量。
- 比较检验统计量与χ²分布的临界值。
如果检验统计量大于临界值,则拒绝白噪声假设,表明模型未能充分解释数据中的相关结构。