统计学第五周打卡:概率与概率分布python实现

这篇博客详细介绍了统计学中常见的概率分布,包括伯努利分布、二项分布、几何分布、泊松分布和正态分布。伯努利分布描述了抛硬币等二元事件的概率;二项分布关注N次独立伯努利试验中成功次数的概率;几何分布则聚焦于首次成功的尝试次数;泊松分布是二项分布的连续极限,用于描述单位时间或区域内事件发生的次数;而正态分布是连续随机变量的概率分布,广泛应用于各种自然现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

伯努利分布

理解:抛一次硬币的实验,只有两个结果,正面or反面

from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
import matplotlib

#下载中文字体
SimHei = matplotlib.font_manager.FontProperties(fname="C:\working\SimHei.ttf") 

#计算数值
x=np.arange(0,2,1)
print("x:",x)
p=0.5 #为正的概率
plist = stats.bernoulli.pmf(x,p)#pmf概率密度函数
print("plist",plist)

#绘制图形
plt.plot(x,plist,marker="o",linestyle="None")#marker 是上面蓝色小点的
plt.vlines(x,0,plist)#绘制竖直线
plt.xlabel("随机变量:抛一次硬币",fontproperties=SimHei)
plt.ylabel("p",fontproperties=SimHei)
plt.title("伯努利分布",fontproperties=SimHei)
plt.show()

在这里插入图片描述

二项分布

理解: 抛N次硬币的实验,每次只有两个结果,正面or反面,求出现正面的每次概率

from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
import matplotlib

#下载中文字体
SimHei = matplotlib.font_manager.FontProperties(fname="C:\working\SimHei.ttf") 

#计算数值
n=5 #抛5次
p=0.5 #为正的概率
x=np.arange(1,n+1,1)#这里就是为了生成横坐标轴
print("x:",x)
plist = stats.binom.pmf(x,n,p)#pmf概率密度函数
print("plist",plist)

#绘制图形
plt.plot(x,plist,marker="o",linestyle="None")#marker 是上面蓝色小点的
plt.vlines(x,0,plist)#绘制竖直线
plt.xlabel("随机变量:抛N次硬币",fontproperties=SimHei)
plt.ylabel("p",fontproperties=SimHei)
plt.title("二项分布",fontproperties=SimHei)
plt.show()

在这里插入图片描述

几何分布

理解: 抛N次硬币的实验,每次只有两个结果,正面or反面,但只到第K次才第一次出现正面

from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
import matplotlib

#下载中文字体
SimHei = matplotlib.font_manager.FontProperties(fname="C:\working\SimHei.ttf") 

#计算数值k
k=5 #第5次首次成功
p=0.5 #为正的概率
x=np.arange(1,k+1,1)#这里就是为了生成横坐标轴
print("x:",x)
plist = stats.geom.pmf(x,p)#pmf概率密度函数
print("plist",plist)

#绘制图形
plt.plot(x,plist,marker="o",linestyle="None")#marker 是上面蓝色小点的
plt.vlines(x,0,plist)#绘制竖直线
plt.xlabel("随机变量:抛N次硬币,第k次首次成功",fontproperties=SimHei)
plt.ylabel("p",fontproperties=SimHei)
plt.title("几何分布",fontproperties=SimHei)
plt.show()

在这里插入图片描述

泊松分布

理解:上面讲的都是一个点发生的事情,泊松分布是二项分母的极限,可以理解为一段区域、时间内发生某件事情概率

from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
import matplotlib

#下载中文字体
SimHei = matplotlib.font_manager.FontProperties(fname="C:\working\SimHei.ttf") 

#计算数值k
mu=4 #平均每天发生4次
k=6 #求第六次概率
x=np.arange(1,k+1,1)#这里就是为了生成横坐标轴
print("x:",x)
plist = stats.poisson.pmf(x,mu)#pmf概率密度函数
print("plist",plist)

#绘制图形
plt.plot(x,plist,marker="o",linestyle="None")#marker 是上面蓝色小点的
plt.vlines(x,0,plist)#绘制竖直线
plt.xlabel("一段时间内,第k次出现概率",fontproperties=SimHei)
plt.ylabel("p",fontproperties=SimHei)
plt.title("泊松分布",fontproperties=SimHei)
plt.show()

在这里插入图片描述

正态分布

理解:上面讲的都是离散型随机变量的概率分布描述,正态分布是连续型随机变量的概率分布描述

from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
import matplotlib

#下载中文字体
SimHei = matplotlib.font_manager.FontProperties(fname="C:\working\SimHei.ttf") 

#计算数值k
mu=0
sigma=1
x=np.arange(-5,5,0.1)#这里就是为了生成横坐标轴
print("x:",x)
plist = stats.norm.pdf(x,mu,sigma)#pdf概率密度函数
#print("plist",plist)

#绘制图形
plt.plot(x,plist)
#plt.vlines(x,0,plist)#绘制竖直线
plt.xlabel("连续型随机变量分布",fontproperties=SimHei)
plt.ylabel("p",fontproperties=SimHei)
plt.title("正态分布",fontproperties=SimHei)
plt.show()

在这里插入图片描述

Windows 系统修复工具主要用于解决 Windows 11/10 系统中的各种常见问题,具有操作简单、功能全面等特点: 文件资源管理器修复:可解决文件资源管理器卡死、崩溃、无响应等问题,能终止崩溃循环。还可修复右键菜单无响应选项缺失问题,以及重建缩略图缓存,让图片、视频等文件的缩略图正常显示,此外,还能处理桌面缺少回收站图标、回收站损坏等问题。 互联网和连接修复:能够刷新 DNS 缓存,加速网页加载速度,减少访问延迟。可重置 TCP/IP 协议栈,增强网络连接稳定性,减少网络掉线情况,还能还原 Hosts 文件,清除恶意程序对网络设置的篡改,保障网络安全,解决电脑重装系统后网络无法连接、浏览器主页被篡改等问题。 系统修复:集成系统文件检查器(SFC),可自动扫描并修复受损的系统文件。能解决 Windows 激活状态异常的问题,还可重建 DLL 注册库,恢复应用程序兼容性,解决部分软件无法正常运行的问题,同时也能处理如 Windows 沙箱无法启动、Windows 将 JPG JPEG 保存为 JFIF 等系统问题。 系统工具维护:提供启动管理器、服务管理器和进程管理器等工具,用户可控制和管理启动程序、系统服务和当前运行的进程,提高系统的启动和运行速度,防止不必要的程序和服务占用系统资源。还能查看系统规格,如处理器线程数、最大显示分辨率等。 故障排除:集成超过 20 个微软官方诊断工具,可对系统问题进行专业排查,还能生成硬件健康状态报告。能解决搜索和索引故障、邮件和日历应用程序崩溃、设置应用程序无法启动等问题,也可处理打印机、网络适配器、Windows 更新等相关故障。 其他修复功能:可以重置组策略设置、catroot2 文件夹、记事本等多种系统设置和组件,如重置 Windows 应用商店缓存、Windows 防火墙设置等。还能添加重建图标缓存支持,恢复粘滞便笺删除
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值