前缀和:指的是用一个数组sum[n]表示数组a[n]的前i项和。
求法:
for(int i = 1; i <= n ; i ++)
sum[i] = sum[i - 1] + a[i];
计算前缀和时数组下标一定要从1开始,方便计算。
用法:前缀和可以用O(1)的复杂度来求某一区间的和,比如求l ~ r区间和可以用sum[r] - sum[l - 1]来计算,常用于需要多次查找某一区间和的问题。
模板题:
输入一个长度为 n 的整数序列。
接下来再输入 m 个询问,每个询问输入一对 l,r 。
对于每个询问,输出原序列中从第 l 个数到第 r 个数的和。
输入格式
第一行包含两个整数 n 和 m 。
第二行包含 n 个整数,表示整数数列。
接下来 m 行,每行包含两个整数 l 和 r ,表示一个询问的区间范围。
输出格式
共 m 行,每行输出一个询问的结果。
数据范围
1≤l≤r≤n ,
1≤n,m≤100000 ,
−1000≤数列中元素的值≤1000
输入样例:
5 3
2 1 3 6 4
1 2
1 3
2 4
输出样例:
3
6
10
假设采用暴力做法,每次相加都枚举过去相加复杂度为O(n),m个询问,总复杂度为O(nm),必超时。这时就体现出前缀和算法查找复杂度为O(1)的优势了。
代码:
#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
int a[N],sum[N],n,m;
int main()
{
cin>>n>>m;
for(int i = 1; i <= n; i ++ )
{
cin>>a[i];
sum[i] = sum[i - 1] + a[i];
}
int l,r;
while(m -- )
{
cin>>l>>r;
cout<<sum[r] - sum[l - 1]<<endl;
}
return 0;
}
再来个数组前缀和的变式,矩阵前缀和:
子矩阵的和:
输入一个 n 行 m 列的整数矩阵,再输入 q 个询问,每个询问包含四个整数 x1,y1,x2,y2 ,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。
输入格式
第一行包含三个整数 n,m,q 。
接下来 n 行,每行包含 m 个整数,表示整数矩阵。
接下来 q 行,每行包含四个整数 x1,y1,x2,y2 ,表示一组询问。
输出格式
共 q 行,每行输出一个询问的结果。
数据范围
1≤n,m≤1000 ,
1≤q≤200000 ,
1≤x1≤x2≤n ,
1≤y1≤y2≤m ,
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21
代码:
#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int n,m,q,x1,x2,y1,y2;
int a[N][N],sum[N][N];
int main()
{
cin>>n>>m>>q;
for(int i = 1; i <= n; i ++ )
for(int j = 1; j <= m; j ++ )
{
cin>>a[i][j];
sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + a[i][j];//矩阵前缀和初始化
}
while(q -- )
{
cin>>x1>>y1>>x2>>y2;
cout<<sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1]<<endl;//计算x1y1为左上角,x2y2为右下角的矩阵的和
}
return 0;
}