前缀和模板

前缀和:指的是用一个数组sum[n]表示数组a[n]的前i项和。
求法:
for(int i = 1; i <= n ; i ++)
sum[i] = sum[i - 1] + a[i];
计算前缀和时数组下标一定要从1开始,方便计算。
用法:前缀和可以用O(1)的复杂度来求某一区间的和,比如求l ~ r区间和可以用sum[r] - sum[l - 1]来计算,常用于需要多次查找某一区间和的问题

模板题:

输入一个长度为 n 的整数序列。

接下来再输入 m 个询问,每个询问输入一对 l,r 。

对于每个询问,输出原序列中从第 l 个数到第 r 个数的和。

输入格式
第一行包含两个整数 n 和 m 。

第二行包含 n 个整数,表示整数数列。

接下来 m 行,每行包含两个整数 l 和 r ,表示一个询问的区间范围。

输出格式
共 m 行,每行输出一个询问的结果。

数据范围
1≤l≤r≤n ,
1≤n,m≤100000 ,
−1000≤数列中元素的值≤1000
输入样例:
5 3
2 1 3 6 4
1 2
1 3
2 4
输出样例:
3
6
10

假设采用暴力做法,每次相加都枚举过去相加复杂度为O(n),m个询问,总复杂度为O(nm),必超时。这时就体现出前缀和算法查找复杂度为O(1)的优势了。

代码:

#include<bits/stdc++.h>
using namespace std;

const int N = 100010;

int a[N],sum[N],n,m;

int main()
{
    cin>>n>>m;
    for(int i = 1; i <= n; i ++ )
    {
        cin>>a[i];
        sum[i] = sum[i - 1] + a[i];
    }
    int l,r;
    while(m -- )
    {
        cin>>l>>r;
        cout<<sum[r] - sum[l - 1]<<endl;
    }
    return 0;
}

再来个数组前缀和的变式,矩阵前缀和

子矩阵的和:
输入一个 n 行 m 列的整数矩阵,再输入 q 个询问,每个询问包含四个整数 x1,y1,x2,y2 ,表示一个子矩阵的左上角坐标和右下角坐标。

对于每个询问输出子矩阵中所有数的和。

输入格式
第一行包含三个整数 n,m,q 。

接下来 n 行,每行包含 m 个整数,表示整数矩阵。

接下来 q 行,每行包含四个整数 x1,y1,x2,y2 ,表示一组询问。

输出格式
共 q 行,每行输出一个询问的结果。

数据范围
1≤n,m≤1000 ,
1≤q≤200000 ,
1≤x1≤x2≤n ,
1≤y1≤y2≤m ,
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21
代码:

#include<bits/stdc++.h>
using namespace std;

const int N = 1010;
int n,m,q,x1,x2,y1,y2;
int a[N][N],sum[N][N];

int main()
{
    cin>>n>>m>>q;
    for(int i = 1; i <= n; i ++ )
        for(int j = 1; j <= m; j ++ )
        {
            cin>>a[i][j];
            sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + a[i][j];//矩阵前缀和初始化
        }
    while(q -- )
    {
        cin>>x1>>y1>>x2>>y2;
        cout<<sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1]<<endl;//计算x1y1为左上角,x2y2为右下角的矩阵的和
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值