GCD模板(求最大公约数)

该博客详细介绍了欧几里得算法(辗转相除法)用于计算最大公约数的原理和实现,包括C语言的函数实现intgcd(inta,intb)。博主通过数学证明了gcd(a,b)=gcd(b,a%b)的正确性,并从左右两个方向进行了充分必要性的论证。此算法是计算两个整数最大公约数的基础方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

int gcd(int a,int b)
{
    return b ? gcd(b,a % b) : a;
}

也叫欧几里得算法或辗转相除法。

证明:根据模板需要证明gcd(a,b) = gcd(b,a % b)

有d是a的约数,d是b的约数,d是ax + by的约数。
又有a mod b = a - (a / b(下取整) * b),设 c = a / b(下取整)
所以需要证明:gcd(a,b) = gcd(b,a - (c * b))

利用充分必要性证明:

左到右:根据第一条定理,只要某个数是a和b的公约数,就一定是 a - (c * b)的约数,可证。

右到左:需证如果 d是 a - (c * b)的约数,那么d是a的约数
d是a - (c * b)的约数,那么d也是a - (c * b) + (c * b)= a 的约数,所以可证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值