初探神经网络-A Neural Network Playground -part3

  初探神经网络-A Neural Network Playground -part1-CSDN博客

  初探神经网络-A Neural Network Playground -part2-CSDN博客

        本文主要讲述使用结果及初步分析,用来了解神经网络的应用。

4.神经网络测试

4.1隐藏层影响

变量学习率激活函数正则化正则化率问题类型训练与测试数据之比噪音批大小
0.03Tanh0分类(circle)50%1010
NoFeaturesLayers节点数CircleSpiral
Epochs

Train

loss

Test

loss

Epochs

Train

loss

Test

loss

1x1,x2  005200.4920.53080.4740.473
2x1,x2 145430.0290.0417420.3930.461
3x1,x2 28,43630.0070.0477010.050.132
4x1,x238,6,23250.0090.0539090.0190.038
5x1,x248,8,5,25450.0480.0527900.090.195
6x1,x258,8,8,5,23230.0040.0327510.150.283
7x1,x268,8,8,8,4,25320.0090.0728930.010.093
8x1,x268,8,8,8,8,82280.0040.0169450.0150.074

总结:

        1.有了隐藏层,训练效果明显提高

        2.层数增多后,训练损失有提高也有波折,测试损失也有降低

        3.训练结果和测试结果有差距。

4.2特征的影响

变量学习率激活函数正则化正则化率训练与测试数据之比噪音批大小
0.03Tanh050%1010
隐藏层数4节点数8,6,8,4
NoFeaturesCircleSpiral
Epochs

Train

loss

Test

loss

Epochs

Train

loss

Test

loss

1x1,x2 3960.0320.0545660.1720.361
2x1,x2 ,x1x24110.0120.0216210.0710.127
3x1,x2 ,x1^2,x2^24830.0110.0485000.0220.026
4x1,x2 ,x1^2,x2^2,x1x23810.0170.0573910.0020.015
5x1,x2,sinx1,sinx24920.0290.0514510.0110.039
6x1,x2,sinx1,sinx2,x1x23100.0180.0363180.0080.114
7x1,x2,x1^2,x2^2,x1x2,sinx1,sinx23070.0330.0563230.0170.024

4.3激活函数影响

变量学习率正则化正则化率训练与测试数据之比噪音批大小
0.03050%1010
隐藏层数4
节点数8,6,8,4
特征x1,x2,x1^2,x2^2,x1x2,sinx1,sinx2
No激活函数CircleSpiral
Epochs

Train

loss

Test

loss

Epochs

Train

loss

Test

loss

1Tanh1950.0150.0342540.0210.069
2ReLU2680.0010.0542290.0090.144
3Sigmoid1710.50.52510.4950.513
4Linear2240.0240.0282650.4520.505

No激活函数ExclusiveGaussian
Epochs

Train

loss

Test

loss

Epochs

Train

loss

Test

loss

1Tanh15200.04720200.023
2ReLU3150.010.0311900.004
3Sigmoid260.490.4971030.4970.499
4Linear2300.0080.01725600.018

No激活函数PlaneMulti gaussian
Epochs

Train

loss

Test

loss

Epochs

Train

loss

Test

loss

1Tanh1300.0030.0032080.0100.013
2ReLU930.0010.0024010.0170.021
3Sigmoid1010.120.1281620.0430.044
4Linear760.0010.0021470.0440.041

4.4学习率影响

变量激活函数正则化正则化率问题类型训练与测试数据之比噪音批大小
Tanh0分类(circle)50%1010
No学习率Circle
Epochs

Train loss

Test loss

10.00013120.4960.496
20.033110.0110.055
313030.0990.21
4101061.0561.04

4.5正则化影响

变量学习率激活函数问题类型训练与测试数据之比噪音批大小
0.03Tanh分类(circle)50%1010
No正则化正则化率Circle
Epochs

Train

loss

Test

loss

1L10.0012370.0020.031
2L10.012250.0180.032
3L10.31190.4950.504
4L111160.50.497
5L20.0012030.0330.026
6L20.011260.0210.061
7L20.31150.4960.503
8L21770.4990.493

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三之又三

金钱出真知

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值