初探神经网络-A Neural Network Playground -part1-CSDN博客
初探神经网络-A Neural Network Playground -part2-CSDN博客
本文主要讲述使用结果及初步分析,用来了解神经网络的应用。
4.神经网络测试
4.1隐藏层影响
变量 | 学习率 | 激活函数 | 正则化 | 正则化率 | 问题类型 | 训练与测试数据之比 | 噪音 | 批大小 |
---|---|---|---|---|---|---|---|---|
值 | 0.03 | Tanh | 无 | 0 | 分类(circle) | 50% | 10 | 10 |
No | Features | Layers | 节点数 | Circle | Spiral | ||||
Epochs | Train loss | Test loss | Epochs | Train loss | Test loss | ||||
1 | x1,x2 | 0 | 0 | 520 | 0.492 | 0.5 | 308 | 0.474 | 0.473 |
2 | x1,x2 | 1 | 4 | 543 | 0.029 | 0.041 | 742 | 0.393 | 0.461 |
3 | x1,x2 | 2 | 8,4 | 363 | 0.007 | 0.047 | 701 | 0.05 | 0.132 |
4 | x1,x2 | 3 | 8,6,2 | 325 | 0.009 | 0.053 | 909 | 0.019 | 0.038 |
5 | x1,x2 | 4 | 8,8,5,2 | 545 | 0.048 | 0.052 | 790 | 0.09 | 0.195 |
6 | x1,x2 | 5 | 8,8,8,5,2 | 323 | 0.004 | 0.032 | 751 | 0.15 | 0.283 |
7 | x1,x2 | 6 | 8,8,8,8,4,2 | 532 | 0.009 | 0.072 | 893 | 0.01 | 0.093 |
8 | x1,x2 | 6 | 8,8,8,8,8,8 | 228 | 0.004 | 0.016 | 945 | 0.015 | 0.074 |
总结:
1.有了隐藏层,训练效果明显提高
2.层数增多后,训练损失有提高也有波折,测试损失也有降低
3.训练结果和测试结果有差距。
4.2特征的影响
变量 | 学习率 | 激活函数 | 正则化 | 正则化率 | 训练与测试数据之比 | 噪音 | 批大小 |
值 | 0.03 | Tanh | 无 | 0 | 50% | 10 | 10 |
隐藏层数 | 4 | 节点数 | 8,6,8,4 |
No | Features | Circle | Spiral | ||||
Epochs | Train loss | Test loss | Epochs | Train loss | Test loss | ||
1 | x1,x2 | 396 | 0.032 | 0.054 | 566 | 0.172 | 0.361 |
2 | x1,x2 ,x1x2 | 411 | 0.012 | 0.021 | 621 | 0.071 | 0.127 |
3 | x1,x2 ,x1^2,x2^2 | 483 | 0.011 | 0.048 | 500 | 0.022 | 0.026 |
4 | x1,x2 ,x1^2,x2^2,x1x2 | 381 | 0.017 | 0.057 | 391 | 0.002 | 0.015 |
5 | x1,x2,sinx1,sinx2 | 492 | 0.029 | 0.051 | 451 | 0.011 | 0.039 |
6 | x1,x2,sinx1,sinx2,x1x2 | 310 | 0.018 | 0.036 | 318 | 0.008 | 0.114 |
7 | x1,x2,x1^2,x2^2,x1x2,sinx1,sinx2 | 307 | 0.033 | 0.056 | 323 | 0.017 | 0.024 |
4.3激活函数影响
变量 | 学习率 | 正则化 | 正则化率 | 训练与测试数据之比 | 噪音 | 批大小 |
值 | 0.03 | 无 | 0 | 50% | 10 | 10 |
隐藏层数 | 4 |
节点数 | 8,6,8,4 |
特征 | x1,x2,x1^2,x2^2,x1x2,sinx1,sinx2 |
No | 激活函数 | Circle | Spiral | ||||
Epochs | Train loss | Test loss | Epochs | Train loss | Test loss | ||
1 | Tanh | 195 | 0.015 | 0.034 | 254 | 0.021 | 0.069 |
2 | ReLU | 268 | 0.001 | 0.054 | 229 | 0.009 | 0.144 |
3 | Sigmoid | 171 | 0.5 | 0.5 | 251 | 0.495 | 0.513 |
4 | Linear | 224 | 0.024 | 0.028 | 265 | 0.452 | 0.505 |
No | 激活函数 | Exclusive | Gaussian | ||||
Epochs | Train loss | Test loss | Epochs | Train loss | Test loss | ||
1 | Tanh | 152 | 0 | 0.047 | 202 | 0 | 0.023 |
2 | ReLU | 315 | 0.01 | 0.03 | 119 | 0 | 0.004 |
3 | Sigmoid | 26 | 0.49 | 0.497 | 103 | 0.497 | 0.499 |
4 | Linear | 230 | 0.008 | 0.017 | 256 | 0 | 0.018 |
No | 激活函数 | Plane | Multi gaussian | ||||
Epochs | Train loss | Test loss | Epochs | Train loss | Test loss | ||
1 | Tanh | 130 | 0.003 | 0.003 | 208 | 0.010 | 0.013 |
2 | ReLU | 93 | 0.001 | 0.002 | 401 | 0.017 | 0.021 |
3 | Sigmoid | 101 | 0.12 | 0.128 | 162 | 0.043 | 0.044 |
4 | Linear | 76 | 0.001 | 0.002 | 147 | 0.044 | 0.041 |
4.4学习率影响
变量 | 激活函数 | 正则化 | 正则化率 | 问题类型 | 训练与测试数据之比 | 噪音 | 批大小 |
---|---|---|---|---|---|---|---|
值 | Tanh | 无 | 0 | 分类(circle) | 50% | 10 | 10 |
No | 学习率 | Circle | ||
Epochs | Train loss | Test loss | ||
1 | 0.0001 | 312 | 0.496 | 0.496 |
2 | 0.03 | 311 | 0.011 | 0.055 |
3 | 1 | 303 | 0.099 | 0.21 |
4 | 10 | 106 | 1.056 | 1.04 |
4.5正则化影响
变量 | 学习率 | 激活函数 | 问题类型 | 训练与测试数据之比 | 噪音 | 批大小 |
---|---|---|---|---|---|---|
值 | 0.03 | Tanh | 分类(circle) | 50% | 10 | 10 |
No | 正则化 | 正则化率 | Circle | ||
Epochs | Train loss | Test loss | |||
1 | L1 | 0.001 | 237 | 0.002 | 0.031 |
2 | L1 | 0.01 | 225 | 0.018 | 0.032 |
3 | L1 | 0.3 | 119 | 0.495 | 0.504 |
4 | L1 | 1 | 116 | 0.5 | 0.497 |
5 | L2 | 0.001 | 203 | 0.033 | 0.026 |
6 | L2 | 0.01 | 126 | 0.021 | 0.061 |
7 | L2 | 0.3 | 115 | 0.496 | 0.503 |
8 | L2 | 1 | 77 | 0.499 | 0.493 |