ELMO简单理解

本文介绍了词向量的基本概念,包括独热编码和嵌入表示,并重点解析了ELMO(Embeddings from language Model Transform)的工作原理。ELMO通过考虑词在句子中的上下文,为每个词在不同情境下提供不同的嵌入,从而提高表示的语义丰富性。通过在双向RNN中结合多层嵌入并使用加权求和,ELMO能够适应不同的下游任务需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 词向量

以下为常见两种词向量形式

  1. 1-of-N Encoding (one hot):独热编码, 词汇是独立的,通过0-1向量表示,涉及的向量维度会很大 ;
  2. Embedding:根据词汇的上下文将词汇表达成向量,语义相似的词汇对应的向量较为接近,传统一个word token对应一个embedding,但同一个词汇在不同语句中可有多重含义,我们希望每个不同的word token在不同语境下赋予给不同的emdeding。

2. ELMO:

ELMO全拼为Embeddings from language Model Transform,其目标为了给每个不同的word token赋予不同的embedding,而相同的token在不同语境下也会有不同的embedding。

以“把 你 的 包袱 拿 好…”为例:我们通过大量的语料训练模型,希望当给RNN-based模型输入BOS(begin of sentence)标记时,模型能输出下一个词“把”, 当给模型输入“把”时,模型能输出下一个词“你”,两句中的“包袱”经过RNN-based模型在这个过程中都产生的word embedding,虽然都是“包袱”,但两句中的包袱对应的词向量不同,因为这里的word embedding在训练过程中考虑句子的上下文。

图一为单向的RNN-based model,图二展示了双向的RNN-based model,这样对于每个token,则会对应两个embedding,ELMO通过将两个token结合得到该token的embedding,但往往模型会涉及多层,而每层都会涉及embedding。
在这里插入图片描述图一:单向RNN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值