本文介绍了一种名为FewFaceNet的新型人脸认证技术,旨在解决现有方法在资源受限环境下的局限性。该技术基于轻量级的增量式人脸识别,可以使用单张人脸图像进行身份验证,并且可以在黑暗环境下处理红外图像。
创新点:
- 新型轻量级骨干模型:FewFaceNet使用轻量级的骨干网络模型,仅包含1.3百万个参数,非常适合小型边缘设备,如门禁摄像头。
- 增量小样本学习:所提出的 FewFaceNet 模型能够利用最先进的连体网络来处理单个图像。
- 动态数据集的工作:FewFaceNet可以适应动态的数据集,当人到达时,可以通过门禁摄像头将其图像添加到支持集中。对于新的服务人员,将创建一个新的类别。
- 新的查询数据集:我们开发了两种不同类型的工作查询数据集。一种是从几个可靠的来源获取 RGB 图像。其次,我们在一组志愿者的帮助下创建了一个包含红外相机捕获的图像的数据集,以评估其对低光环境中工作的适用性。此数据集说明了FewFaceNet在红外相机下也能保持较高的识别准确率。
FewFaceNet的工作过程
骨干模型的体系结构:模型的核心特征是其树状并行结构,包括三个分支。每个分支都具有不同的架构,分别受到不同激发的影响。每个分支都负责不同层次的特征提取。第一个分支采用了简单的卷积层和 ReLU 激活单元,第二个分支受到了 ResNet 架构的启发,通过轻量级残差块提取特征,而第三个分支则采用了 DenseNet 架构,通过密集连接实现特征提取。
在不同层级中,模型利用参数共享来减少冗余并提高计算效率。这种共享参数的设计有助于模型在有限资源条件下实现更好的性能。
实验: