
引言
要找到外部的一个点到一个四边形的最短距离,我们需要计算该点到四边形每条边的距离,然后取这些距离中的最小值。
C++ 判断点是否在旋转矩形内部
方法
要找到外部的一个点到一个四边形的最短距离,我们可以按照以下步骤进行:
-
确定点和四边形的坐标:设点为 ( P = (x0, y0) ),四边形的顶点为 (A = (x1, y1)),(B = (x2, y2)),(C = (x3, y3)) 和 (D = (x4, y4))。
-
计算点到四边形每条边的距离:四边形的每条边可以被视为一条线段。点到线段的最短距离可以通过以下方式计算:
点 ( P ) 到线段 ( AB ) 的距离可以通过以下步骤计算:
- 如果点不在由线段端点定义的直线上,最短距离是点到直线的垂直距离。
- 如果点在由线段端点定义的直线上,最短距离是点到线段端点之一的距离。
- 找到通过点 ( A ) 和 ( B ) 的直线的方程。
- 计算点 ( P ) 到这条直线的垂直距离。
- 检查垂直线是否在 ( A ) 和 ( B ) 之间。如果不在,最短距离是 ( P ) 到 ( A ) 或 ( B ) 的距离,取较小者。
- 比较点到四边形每条边的距离:在计算了点到四边形每条边的距离后,最短距离是这些距离中的最小值。
让我们将点到四边形每条边的距离表示为 (d1, d2, d3, d4) 。
点到四边形的最短距离是:min(d1, d2, d3, d4)。
程序
以下是一个C++函数,它计算一个点到一个四边形的最短距离:
#include <iostream>
#include <cmath>
#include <algorithm>
struct Point {
double x, y;
};
// 计算两点之间的距离
double distance(const Point& a, const Point& b) {
return std::sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
// 计算点到线段的最短距离
double pointToSegmentDistance(const Point& p, const Point& a, const Point& b) {
double abx = b.x - a.x;
double aby = b.y - a.y;
double apx = p.x - a.x;
double apy = p.y - a.y;
double t = (apx * abx + apy * aby) / (abx * abx + aby * aby);
if (t < 0) {
return distance(p, a);
} else if (t > 1) {
return distance(p, b);
} else {
Point projection;
projection.x = a.x + t * abx;
projection.y = a.y + t * aby;
return distance(p, projection);
}
}
// 计算点到四边形的最短距离
double pointToQuadrilateralDistance(const Point& p, const Point& a, const Point& b, const Point& c, const Point& d) {
double d1 = pointToSegmentDistance(p, a, b);
double d2 = pointToSegmentDistance(p, b, c);
double d3 = pointToSegmentDistance(p, c, d);
double d4 = pointToSegmentDistance(p, d, a);
return std::min({d1, d2, d3, d4});
}
int main() {
Point p = {-1.0, -0.1};
Point a = {0.0, 0.1};
Point b = {2.0, 0.0};
Point c = {2.0, 2.0};
Point d = {0.0, 2.0};
double minDistance = pointToQuadrilateralDistance(p, a, b, c, d);
std::cout << "The minimum distance from point to the quadrilateral is: " << minDistance << std::endl;
return 0;
}
这个程序定义了一个计算点到线段最短距离的 pointToSegmentDistance函数,以及一个计算点到四边形最短距离的 pointToQuadrilateralDistance 函数。
小结
在计算点到线段的最短距离时,( t ) 是一个参数,用于确定点在直线上的投影位置。具体来说,( t ) 表示点 ( P ) 在线段 ( AB ) 上的投影位置相对于线段起点 ( A ) 的比例。
- ( t < 0 ):
这意味着点 ( P ) 的投影在点 ( A ) 之前,即投影点不在线段 ( AB ) 上,而是在线段延长线的 ( A ) 端之外。在这种情况下,点 ( P ) 到线段 ( AB ) 的最短距离是点 ( P ) 到点 ( A ) 的距离。 - ( t > 1 ):
这意味着点 ( P ) 的投影在点 ( B ) 之后,即投影点不在线段 ( AB ) 上,而是在线段延长线的 ( B ) 端之外。在这种情况下,点 ( P ) 到线段 ( AB ) 的最短距离是点 ( P ) 到点 ( B ) 的距离。 - ( 0≤t≤1 ):
这意味着点 ( P ) 的投影在线段 ( AB ) 上。在这种情况下,最短距离是点 ( P ) 到投影点的距离。
通过检查 ( t ) 的值,我们可以确定点 ( P ) 的投影位置是否在线段 ( AB ) 上,从而计算出点到线段的最短距离。
另外,在计算点到四边形的最短距离时,四边形的顶点顺序(逆时针或顺时针)并不影响计算结果。这是因为我们是通过计算点到每条边的距离来确定最短距离的,而不是依赖于四边形的内部结构或方向性。
因此,无论是逆时针顺序还是顺时针顺序,只要四边形的顶点按照顺序连接形成四边形的边界,计算点到四边形的最短距离的方法都是相同的。