22、三维刚体运动中变换矩阵的逆


在这里插入图片描述

引言

在三维空间中,刚体运动可以通过变换矩阵(通常是一个4x4矩阵)来表示,这个矩阵包括旋转和平移部分。变换矩阵的逆可以用来逆转这个变换,即将物体从目标位置变换回原始位置。

变换矩阵

一个典型的三维变换矩阵 ( T ) 可以表示为:
在这里插入图片描述
其中:

  • ( R ) 是一个3x3的旋转矩阵。
  • ( t ) 是一个3x1的平移向量。
  • ( 0T ) 是一个1x3的零向量。
  • 最后一个元素是1,表示齐次坐标。

逆变换矩阵

要找到变换矩阵 ( T ) 的逆 ( T-1 ),

1. 旋转矩阵的逆:

旋转矩阵 ( R ) 的逆等于其转置,因为旋转矩阵是正交矩阵。所以:

R-1 = RT

2. 变换矩阵的逆:

分块矩阵:
在这里插入图片描述
求逆为:
在这里插入图片描述
套用上述公式,求得变换矩阵的逆矩阵为:
在这里插入图片描述

小结

逆变换矩阵可以用来将一个点或物体从变换后的空间坐标转换回原始坐标。这在许多应用中非常有用,如计算机图形学中的视图变换、机器人学中的路径规划和逆运动学,以及物理模拟中的碰撞检测和响应。

在三维刚体运动中,变换矩阵的逆可以通过取旋转矩阵的转置和调整平移向量来获得。这种逆变换允许我们将物体从一个坐标系转换到另一个坐标系,或者逆转已经应用的变换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值