自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(69)
  • 收藏
  • 关注

原创 当小样本遇上机器学习 fewshot learning

引言深度学习(deeplearning)已经广泛应用于各个领域,解决各类问题,例如在图像分类问题下,如图1,区分这10类目标的准确率目前可以轻松做到94%。然而,deeplearning是一种datahungry的技术,需要大量的标注样本才能发挥作用。图1 现实世界中,有很多问题是没有这么多的标注数据的,获取标注数据的成本也非常大,例如在医疗领域、安全领域等。因此,我们现在讨论的是...

2017-12-30 22:21:10 100467 46

原创 AI 编码助手其实是“反向提效”!

AI编码

2025-07-15 14:27:20 217

原创 18项 2025 CVPR值得关注的数据AI趋势

CVPR 2025(IEEE Conference on Computer Vision and Pattern Recognition)于 2025 年 6 月 11 日至 15 日在美国举行,作为计算机视觉领域的顶级会议,吸引了全球研究者和工业界专家的广泛参与。今年的会议延续了其作为计算机视觉前沿研究展示平台的传统,同时特别强调了人工智能与数据科学的深度融合。在 CVPR 2025 上,数据相关研究占据了显著位置,特别是在数据效率、数据质量和数据增强这三个关键领域。

2025-07-09 15:29:57 844

原创 搞智能体必须知道的MCP和A2A,2分钟带你了解。

其核心逻辑是通过JSON-RPC格式定义标准化接口,允许大模型以类似函数调用的方式访问工具(如数据库查询、代码执行),并通过中间层MCP Server实现安全双向通信。例如,AI客服可通过MCP直接调用CRM系统获取客户信息,无需手动适配API。A2A是谷歌主导的开源协议,基于HTTP/SSE和JSON-RPC构建,允许不同厂商开发的智能体通过“Agent Card”描述能力并动态协作。通过这种组合,企业可实现“工具深度集成+智能体灵活协作”的全栈AI解决方案,推动从流程自动化向智能决策的跃迁。

2025-07-08 09:11:50 697

原创 一场AI界的“科技罗生门”:模型指纹揭露谁在“套壳”?

HonestAGI项目是一场由匿名技术团队发起的AI模型原创性验证行动,通过"模型指纹"技术指控华为盘古大模型抄袭阿里Qwen模型。该项目引发了AI行业的广泛讨论,不仅涉及技术方法的科学性,还触及开源生态的规则边界、模型知识产权的法律界定以及大模型开发的伦理标准。。

2025-07-08 07:00:00 1014

原创 大模型首 Token 策略竞争分析:技术差异与商业影响(2025 年)

豆包 1.6 将输入长度分为不同区间,在输入区间 32K-128K 和 128K-256K 内,定价分别为 1.2 元 / 百万 tokens、16 元 / 百万 tokens,以及 2.4 元 / 百万 tokens、24 元 / 百万 tokens,这种定价策略直接影响用户对首 Token 处理方式的选择。从 OpenAI 的快速响应、Google 的多阶段推理、Anthropic 的精细控制、DeepSeek 的极致性能、通义千问的低成本高效能到豆包的统一架构,形成了多样化的竞争格局。

2025-07-07 09:34:12 786

原创 Data Agent概述

Data Agent是一种基于大模型技术的智能数据分析助手,它继承了AI Agent的“智能骨架”,包括自然语言理解、任务规划、工具调用等能力,又融合了数据工程的“专业肌肉”,如SQL编写、数据清洗、模型推理、报表生成等操作能力。它是一种能自主理解意图、操作数据系统、完成分析任务的“类人智能体”,可以被看作是一个BI报告生成器、全天候的数据分析助手或者懂业务逻辑的SQL编程专家。简单来说,Data Agent是一个能自主理解、分析、处理和响应数据任务的AI智能体。

2025-07-02 14:52:34 659

原创 meta花了1亿美元签下了他!

通义是这么看的:豆包是这么看的:deepseek是这么看的:你是怎么看的?

2025-07-01 22:04:54 70

原创 AI训练数据是你唯一值得关注的

本文探讨了人工智能领域从以模型为中心向以数据为中心的范式转变。研究指出,系统性改进数据集质量比优化复杂模型更能有效提升AI性能、泛化性和公平性。文章详细分析了以数据为中心的AI(DCAI)核心原则,包括数据清理、标注、增强、合成数据生成和特征工程等关键策略。通过医疗、零售、自动驾驶等领域的案例研究,论证了单纯数据改进带来的显著准确率提升。研究还揭示了数据质量与道德风险的内在关联,强调了数据治理的重要性,并介绍了支持DCAI的工具生态。未来研究方向指向更自

2025-07-01 09:18:22 408

原创 量化AI价值的30个关键指标

人工智能 (AI) 成功集成到业务运营中超越了单纯的技术部署;它需要一种严格、可量化的方法来展示其价值。本报告系统地分类并解释了评估 AI 优势的基本指标,从核心模型性能到总体战略和道德考虑因素。必须制定多方面的衡量策略,将技术 AI 指标与运营效率、客户体验、财务绩效、战略优势和负责任的 AI 实践等有形业务成果直接联系起来。稳健的关键绩效指标 (KPI) 不仅仅是问责制的工具;它们是持续改进的关键驱动力,使组织能够证明投资的合理性、优化绩效并确保持续的竞争优势。对于组织来说,要真正利用人工智能的变革力

2025-07-01 08:53:36 227

原创 Andrej Karpathy YC 2025孵化器万字洞察:软件 3.0 时代数据相关的深度分析与创业机会

2025年6月17日,Andrej Karpathy 大佬分享了面向Software 3.0的观点,非常有启发。我从数据领域视角,解读从software 1.0到2.0,再到3.0的演变,并给出相关创业的战略建议。

2025-06-30 13:15:01 1172

原创 马斯克的脑机接口,26年治愈失明,28年全人类变AI

就在刚刚,马斯克又整大活了!他带着脑机接口Neuralink团队,开了1小时发布会,整个过程亮点满满,全程高能。

2025-06-28 16:56:59 1054

原创 数据是AI的‘新代码’,而数据编程是编写它的语言

面向AI的数据编程(Data Programming)是一种以程序化方式生成、优化和管理训练数据的范式,属于数据为中心的人工智能(Data-Centric AI)的核心方法。其核心思想是通过弱监督(Weak Supervision)技术替代传统手工标注,利用领域知识编写标签函数(Labeling Functions)自动标注数据,从而高效构建高质量数据集。面向AI的数据编程是连接领域知识与AI落地的桥梁自动化:将人工经验编码为可复用的标签函数;持续优化:数据与模型协同迭代,响应动态需求;风险控制。

2025-06-27 11:07:51 760

原创 大模型中你必须知道的:Chinchilla范式

其70B参数+1.4万亿token的设计成为LLM高效训练的里程碑。尽管后续模型(如Llama 3)对其缩放定律提出新思考,但其核心思想————仍深刻影响着AI发展路径。未来,结合高质量数据筛选、动态架构调整的“后Chinchilla”范式,或将成为LLM演进的下个方向。,其核心在于通过科学平衡模型规模与训练数据量,在固定计算预算下实现最优性能。Chinchilla架构是DeepMind于2022年提出的一种。,即每10亿参数需匹配200亿token的训练数据。Chinchilla架构的本质是。

2025-06-25 09:00:00 877

原创 阿里巴巴,大变动!

阿里巴巴搜索推荐系统的算法模型迭代已进入大模型驱动的新阶段,通过从传统模型到大模型的技术演进路径,结合多阶段训练范式、端到端优化方法和垂直领域知识注入,实现了搜索推荐效果的持续提升。以LMA2和RecGPT为代表的大模型家族,已在阿里妈妈广告场景和淘宝推荐场景取得显著效果,展现了大模型在电商推荐领域的潜力和价值。从技术角度看,阿里巴巴的算法模型迭代主要体现在三个方面:一是模型架构的创新,如URM的双头输出结构和Set-Out多输出机制,RecGPT的动态Prompt注入和自回归召回方法;

2025-06-24 15:52:51 702

原创 你vibe了吗?- 从vibe coding谈程序员的变革

Vibe Coding代表了软件开发范式的重要转变,它不仅改变了开发者的工作方式,也重塑了软件开发的门槛和效率。这一技术的兴起不是要取代开发者,而是要解放开发者,使他们能够更专注于创造性和战略性的工作。开发者需要适应这一变化,重新定位自己的角色和技能,从"代码编写者"转变为"需求架构师"和"创意实现者"。对于个体开发者,建议采取渐进式学习和应用策略。首先,了解Vibe Coding的基本原理和工具,尝试在简单项目中应用;其次,培养提示词设计和结果验证能力,掌握与AI协作的技巧;

2025-06-24 14:59:13 918

原创 技术不在于懂得多少,而是对技术应用节奏把握的能力

AI的技术发展非常快,颗粒度也越来越细,如何不被高速迭代的节奏所焦虑,我们不应去通过不断了解各种技术去“缓解”焦虑,而是应该对咱们AI工程师核心能力进行重构分析,重点应该聚焦在自己做从事的业务或产业,结合技术与业务融合的关键要素、发展阶段适配策略及趋势挑战,构建如何把握技术落地的节奏的能力才是核心!传统认知中,AI工程师的核心是技术深度(如机器学习算法、编程能力),但其更高阶价值在于。

2025-06-23 10:20:21 987

原创 慢下来,你也能进步!

研究表明,深度工作状态下,大脑前额叶皮层功能得到充分激活,使个体能够进行更复杂的决策和创新性思考,从而真正提升核心能力。,建议采用"深度工作日历"方法,即提前规划每天的深度工作时段(通常为2-3小时),并将其视为不可侵犯的时间块。例如,一位软件工程师通过每天保持2小时的深度编程时间,不仅提高了代码质量,还掌握了多种高级编程技术,实现了职业能力的显著提升。,从而提升工作积极性和幸福感。例如,谷歌公司通过提供丰富的配套设施、弹性工作时间和健康促进措施,既提高了员工的工作效率,又增强了员工的幸福感和忠诚度。

2025-06-23 08:00:00 554

原创 【AI前沿思想】意图经济:通过大型语言模型收集和商品化意图

大型语言模型 (LLM) 的迅速普及为表明意图的行为和心理数据提供了一个新市场的可能性。这篇简短的文章介绍了该新兴市场的一些初始特征。我们调查了科技高管最近所做的努力,他们将人类意向性的捕获、纵和商品化定位为与现在占主导地位的注意力经济相对应的有利可图的平行和可行的延伸,自 1990 年代以来,注意力经济一直围绕用户有限的注意力持续时间扭曲了消费者、公民和媒体规范。我们称这种后续行动为意向经济。我们用两种方式来描述它。

2025-06-22 10:00:00 671

原创 【AI要闻】Anthropic:如何构建多智能体的研究系统

我们发现,在我们的内部研究评估中,以 Claude Opus 4 作为主要代理和 Claude Sonnet 4 子代理的多代理系统的性能比单代理 Claude Opus 4 高出 90.2%。在我们的案例中,人工测试人员注意到,我们的早期代理始终选择经过 SEO 优化的 content farms,而不是权威但排名较低的来源,如学术 PDF 或个人博客。早期的代理会犯一些错误,例如为简单查询生成 50 个子代理,无休止地在 Web 上搜索不存在的来源,以及通过过多的更新分散彼此的注意力。

2025-06-21 09:00:00 490

原创 如何用大模型构建你的的私人顾问

大语言模型私人顾问系统开发指南构建私人顾问系统需整合多源数据(微信朋友圈、小红书等)与大语言模型技术。

2025-06-20 08:57:34 984

原创 如何优化AI模型训练数据集?

面向深度学习的数据集问题挖掘技术是人工智能应用中的关键环节,。这种技术不仅提升了数据质量,也为模型训练提供了更有价值的信息,从而增强深度学习模型的性能和泛化能力。构建此类技术需要从数据集构建、问题挖掘技术和系统集成三个方面进行系统规划。

2025-06-19 20:44:51 766

原创 OpenAI的Deep Research是什么?

openai的deep research的概念、原理和应用场景是什么?

2025-06-18 14:42:06 1031

原创 如何稳定地更新你的大模型知识(算法篇)

随着在线强化学习技术的不断发展,稳定性保障机制也在持续演进。从当前研究趋势看,结合模型预测控制和在线强化学习的混合方法,能够有效提升复杂系统控制的稳定性。有多种方法在处理高维、非线性、不确定性环境中的潜力。未来,这种混合方法可能在更多需要精细控制的场景中得到应用。自适应学习率和动态课程学习等方法正逐渐从理论走向实践,在实际应用中展现出强大的稳定性保障能力。ALRI-SGD等自适应学习率方法通过分析历史梯度信息,动态调整不同维度的学习率,使模型能够适应不同特征的更新需求。

2025-06-14 17:32:45 1110

原创 实现AI数据高效评估的一种方法

本文提出了一种新的机器学习模型训练数据影响分析框架,称为Distilled Datamodel(DDM)。在线评价阶段,则通过对synset进行微调,并结合特定的模型行为评估需求,快速构建出针对不同测试样本的影响力矩阵,有效加速了模型行为分析过程。实验结果表明,与现有方法相比,DDM不仅能够更准确地识别影响模型预测的关键训练数据点,还具备较高的计算效率和更好的隐私保护能力。此外,DDM同样适用于复杂的模型架构和多样化的机器学习任务,展示了其作为理解模型行为、提升模型可靠性和促进模型解释性研究的强大潜力。

2025-06-12 11:38:12 206

原创 如何评估单条数据对AI模型的影响

尽管估计仅针对训练集中z权重的微小变化而得出,但在实践中,它也被用作离散影响概念的合理估计,这是从训练数据集中完全添加/删除数据点的效果 [Koh和Liang,2017]。影响函数已被应用于解释预测并产生置信区间 [Schulam和Saria,2019],调查模型偏差 [Brunet等人,2019,Wang等人,2019],估计Shapley值 [Jia等人,2019,Ghorbani和Zou,2019],改善人类信任 [周等人,2019],并制作数据中毒攻击 [Koh等人,2019]。

2025-06-12 11:18:23 784

原创 AI模型的泛化性的第一性原理是什么?

AI模型中的泛化性(Generalization)指模型在未见过的数据上保持预测准确性的能力,其第一性原理(即最根本的驱动机制)可归结为模型对数据生成规律的本质性学习与复杂度控制。以下结合理论框架与实现机制展开分析:定义:泛化误差 $ R_{\text{exp}}(\hat{f}) $ 是模型 $ \hat{f} $ 在真实分布上的期望风险:Rexp(f^)=EP[L(Y,f^(X))]=∫X×YL(y,f^(x))P(x,y)dxdyR_{\text{exp}}(\hat{f}) = E_{P}[L(

2025-06-12 11:08:59 1016

原创 大模型的幻觉怎么来的?从深度模型的OOD泛化性谈起

在训练过程中,模型需要在多个不同环境(如不同光照条件、不同用户群体)的数据上进行学习,识别那些在不同环境中保持稳定预测能力的特征。分布外泛化(Out-of-Distribution Generalization,OOD泛化)作为机器学习领域的重要研究方向,其理论支撑已经从传统的独立同分布(i.i.d.)假设发展为更加深入的因果科学框架。其中,R(h)是模型h的真实风险(泛化误差),Remp(h)是经验风险(训练误差),ξ是与模型复杂度d、样本量N和置信度δδ相关的函数。

2025-06-11 16:47:27 781

原创 用图卷积来建模视频

图卷积被多个领域广泛关注,本文介绍下我在ECCV2018年上的一个工作,用图卷积来建模视频:Hierarchical Video Frame Sequence Representation with Deep Convolutional Graph Network,希望能做视频建模的带来些思路。如何对视频进行建模呢?也就是如何用一个或多个向量表达一个视频呢?视频指纹算是一种通用的特征,它一...

2019-06-02 19:46:00 1835 8

原创 ECCV2018

两年一度的计算机视觉顶级会议马上要召开了,地点在德国慕尼黑。期待。。。。求同行的伙伴 ……^ _ ^https://eccv2018.org/ 

2018-08-24 22:57:22 2160 2

原创 视频特征

inflattenDevNet A deep event network for multimedia event detection and evidence recounting. TSN https://arxiv.org/pdf/1608.00859.pdfattention https://arxiv.org/pdf/1708.03805.pdfDepthwise separable c...

2018-02-11 11:49:56 1844

原创 敏捷开发

比迭代更好的是持续交付,可以获得更多的价值。我们对项目的认识是不断增长的,越往后越多用户反馈,技术环境、市场环境是不断变化的我们需要增量地做决策,更快(早)地交付价值和灵活地响应变化。

2018-01-14 17:30:09 406

原创 关于深度学习的优化理论的一些点

min-batch, shuffle, overfit

2017-09-17 23:02:33 1026

原创 tensorboard显示空白

tensorboard show blank

2017-09-02 17:14:23 3584

原创 训练CNN时关于数据配比的技巧

训练数据配比,类间非平衡

2017-08-17 20:21:37 1831

原创 深度学习输入符号编码

对于一些符号数据,比如用户ID、字词等,需要编码后输入网络

2017-07-19 10:50:12 2974

原创 机器学习的调式和可视化

debug for ML

2017-07-19 10:47:03 963

原创 mobilenet

mobilenet

2017-07-17 22:20:59 26266 1

原创 cout 为啥慢

cout

2017-06-30 20:38:58 2696

原创 tensorflow编程一些需要知道的 - 5 实现logistic分类器

tensorflow logistic classificationtensorflow 实现逻辑回归

2017-06-30 16:14:23 2062

风控-腾讯广告反欺诈白皮书

根据CNNIC统计,截至2018年6月,中国手机网民规模达7.88亿,网民通过手机接入互联网的 比例高达98.3%,同比增长3.2%。目前,中国每个手机网民下载使用的手机应用数量平均超过十个。 手机应用种类不断增长,用户规模不断上升,使用场景愈加丰富。 以手机为代表的移动端设备已成为品牌和广告主开展营销、与消费者沟通的主要渠道。未来,品牌 和广告主在移动广告上投入的预算也将不断加大。但与此同时,由于信息不对称和数据可见性的缺 乏,移动广告欺诈问题愈加严重,甚至已经成为一种业务成本。Forrester最新研究报告表明,43% 的营销人员表示在过去12月内因广告欺诈所浪费的广告预算有所增长,34%的营销人员称其移动广告 预算约有超过一半被移动网站广告欺诈和应用内广告欺诈所浪费。 为净化互联网广告市场、促进行业健康发展,腾讯灯塔、秒针系统和AdMaster于2017年4月携手 成立了国内首个广告反欺诈大数据实验室,并于2017年10月联合发布《2017广告反欺诈白皮书》。 基于过去一年移动广告欺诈的新情况和新变化,以及作弊方式和反作弊技术的变迁,腾讯灯塔和 秒针系统再度携手,向行业推出《2018广告反欺诈白皮书》,旨在厘清当前国内移动营销市场的广告 欺诈情况、攻防技术及对策,以期推动移动广告行业的透明度和规范化发展

2025-07-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除