多标签分类问题

本文探讨了多标签分类问题的转化和算法适应方法,包括PT1至PT6的各种策略,如降维、标注依赖、主动学习、多实例多标签学习、多视角学习、多任务学习以及层次多标签分类等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大致上,解决multilabel的方法有两种

1)转化问题。把问题转化为一个或多个单目标分类问题,或是回归问题。

2)算法适应。修改学习算法使得能直接处理multilabel的数据。


问题转化方法 dubbed PTx法。包括

  • PT1 对有多标签的数据随机选取一个标签

     
  • PT2 直接把标签数大于1的都丢掉
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mao_feng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值