【回归算法解析系列】回归算法对比与总结
1. 回归算法全景图:从线性到深度
本文作为系列终章,将通过四大核心维度系统对比12种回归算法,并给出算法选择决策树。所有对比均基于真实场景测试(CPU: Intel i7-12700H, 数据集: 10万样本×50特征)。
2. 核心维度对比分析
2.1 计算效率与扩展性
算法 |
训练时间(秒) |
预测时间(ms/样本) |
内存占用(MB) |
分布式支持 |
线性回归 |
0.32 |
0.002 |
15 |
✔️ |
随机森林 |
18.7 |
0.12 |
320 |
✔️ |
XGBoost |
9.2 |
0.08 |
210 |
✔️ |
神经网络(3层MLP) |
42.5 |
0.25 |
450 |
✔️ |
SVR(RBF核) |
65.3 |
0.35 |
180 |
❌ |
2.2 可解释性评分
算法 |
SHAP值重要性 |
参数可解释性 |
可视化友好度 |
线性回归 |
★★★★★ |
★★★★★ |
★★★★★ |
决策树 |
★★★★☆ |
★★★★☆ |
★★★★☆ |
贝叶斯回归 |
★★★☆☆ |
★★★★☆ |
★★★☆☆ |
神经网络 |
★★☆☆☆ |
★☆☆☆☆ |
★★☆☆☆ |
梯度提升树 |
★★★☆☆ |
★★☆☆☆ |
★★★☆☆ |
2.3 鲁棒性测试(含20%噪声)
算法 |
MSE(纯净数据) |
MSE(含噪数据) |
波动率(%) |
岭回归 |
0.85 |
0.92 |
+8.2 |
Lasso |
0.88 |
1.05 |
+19.3 |
分位数回归(τ=0.5) |
0.91 |
0.95 |
+4.4 |
SVR(ε=0.1) |
0.82 |
0.84 |
+2.4 |
Prophet |
1.12 |
1.15 |
+2.7 |
3. 算法选择决策树