
nlp
文章平均质量分 68
处女座_三月
增长见识, 去见识更加广阔的世界
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
chatgpt 接口 和 jupyter版本安装
【代码】chatgpt 接口。原创 2023-10-16 15:22:54 · 1191 阅读 · 0 评论 -
03- LSTM 的从零开始实现
定义 LSTM 主体结构# 准备开始进行前向传播。原创 2023-09-12 22:46:17 · 810 阅读 · 1 评论 -
02- pytorch 实现 RNN
表示词汇表的大小,它代表了序列中的每个时间步可能的输入的数量。在自然语言处理任务中,词汇表的大小通常对应于词汇表中不同词汇的数量。这个 RNN 层可以用来处理序列数据,例如文本数据,在文本数据中,每个时间步可以对应一个词汇表中的一个词或一个词的嵌入表示。,即 RNN 层内部神经元的数量。,返回一个全零的张量,其形状取决于 RNN 的层数、方向数、隐藏单元数以及批量大小。在循环神经网络中,输入数据通常是一个序列,每个时间步的输入是一个向量。,该模型是一个循环神经网络 (RNN) 模型,用于处理序列数据。原创 2023-09-12 21:41:25 · 556 阅读 · 1 评论 -
01- 从零开始完整实现-循环神经网络RNN
使用 pytorch 搭建循环神经网络RNN,循环神经网络(Recurrent Neural Network,RNN)是一类用于 处理序列数据的神经网络架构。与传统神经网络不同,RNN 具有内部循环结构,可以在处理序列数据时保持状态信息。这使得 RNN 在自然语言处理、时间序列预测、语音识别等许多领域中非常有用。原创 2023-09-10 21:14:53 · 2366 阅读 · 0 评论