【华为OD】C卷真题 200分: 跳格子游戏 C语言代码实现[思路+代码]

本文介绍了华为在线开发者(OD)考试中的一道C卷真题,涉及跳格子游戏的解决方案。提供了C++、Python和Java三种语言的代码实现,主要利用递归策略来解决依赖关系问题。

 C++代码实现:

【华为OD】C卷真题 200分: 跳格子游戏 C/C++代码实现[思路+代码]-CSDN博客

python代码实现:

【华为OD】C卷真题 200分: 跳格子游戏 python代码实现[思路+代码]-CSDN博客

Java代码实现:

【华为OD】C卷真题 200分: 跳格子游戏 Java代码实现[思路+代码]-CSDN博客

题目描述:

地上共有N个格子,你需要跳完地上所有的格子,但是格子间是有强依赖关系的,跳完前一个格子后,后续的格子才会被开启,格子间的依赖关系由多组steps数组给出,steps[0]表示前一个格子,steps[1]表示steps[0]可以开启的格子:
比如[0,1]表示从跳完第0个格子以后第1个格子就开启了,比如[2,1],[2,3]表示跳完
### 问题解析 最优资源配问题是一个典型的动态规划问题,目标是通过合理配资源,使得在满足约束条件的情况下达到某种最优解。根据引用内容[^3],该问题涉及三种不同的配置(A、B、C),每种配置占用不同容量的芯片资源。需要使用C语言实现这一问题的解决方案。 --- ### 动态规划思路 动态规划的核心思想是将问题解为子问题,并通过记录子问题的解来避免重复计算。对于本题,可以定义一个一维数组 `dp`,其中 `dp[i]` 表示容量为 `i * 1.25G` 时的最大价值或最优解。 #### 状态转移方程 假设三种配置的价值别为 `value_A`, `value_B`, `value_C`,对应的容量为 `capacity_A = 1.25G`, `capacity_B = 2.5G`, `capacity_C = 10G`。状态转移方程如下: ```c dp[i] = max(dp[i], dp[i - capacity_A] + value_A, dp[i - capacity_B] + value_B, dp[i - capacity_C] + value_C) ``` 其中,`i` 表示当前总容量(单位为 `1.25G`)。 #### 边界条件 - 当 `i < capacity_A` 或 `i < capacity_B` 或 `i < capacity_C` 时,无法选择对应配置。 - 初始化 `dp[0] = 0`,表示容量为 0 时,最优解为 0。 --- ### C语言实现代码 以下是使用C语言实现最优资源配问题的完整代码: ```c #include <stdio.h> #include <stdlib.h> #define MAX_CAPACITY 1000 // 假设最大容量为1000个单位(即1250G) #define MAX(a, b) ((a) > (b) ? (a) : (b)) int main() { int M; // 总容量单位数 printf("请输入总容量单位数M: "); scanf("%d", &M); if (M <= 0 || M > MAX_CAPACITY) { printf("输入的容量超出范围!\n"); return -1; } int capacity_A = 1; // 配置A占用1个单位 int capacity_B = 2; // 配置B占用2个单位 int capacity_C = 8; // 配置C占用8个单位 int value_A = 1; // 配置A的价值 int value_B = 2; // 配置B的价值 int value_C = 8; // 配置C的价值 int dp[MAX_CAPACITY + 1]; // 动态规划数组 for (int i = 0; i <= M; i++) { dp[i] = 0; // 初始化 } for (int i = 1; i <= M; i++) { if (i >= capacity_A) { dp[i] = MAX(dp[i], dp[i - capacity_A] + value_A); } if (i >= capacity_B) { dp[i] = MAX(dp[i], dp[i - capacity_B] + value_B); } if (i >= capacity_C) { dp[i] = MAX(dp[i], dp[i - capacity_C] + value_C); } } printf("最优资源配的最大价值为: %d\n", dp[M]); return 0; } ``` --- ### 代码说明 1. **输入部**:用户需要输入总容量单位数 `M`,程序会根据输入计算最优解。 2. **初始化部**:定义了三种配置的容量和价值,并初始化动态规划数组 `dp`。 3. **核心逻辑**:通过遍历所有可能的容量,逐步更新 `dp` 数组中的值,直到得到最终结果。 4. **输出部**:打印出最优资源配的最大价值。 --- ### 示例运行 假设输入总容量单位数 `M = 10`,则程序输出为: ``` 请输入总容量单位数M: 10 最优资源配的最大价值为: 10 ``` --- ### 注意事项 - 如果问题中没有明确给出三种配置的具体价值(`value_A`, `value_B`, `value_C`),可以根据实际需求进行调整。 - 动态规划数组的大小取决于最大容量单位数 `M`,需确保不会超出内存限制。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五木大大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值