深入详解矩阵与向量运算及矩阵分解技术
在人工智能和机器学习领域,矩阵与向量运算以及矩阵分解技术是基础且关键的数学工具。它们在数据处理、特征提取、降维、模型训练等多个环节中发挥着重要作用。本文将深入探讨矩阵与向量的基本运算,理解其性质,并详细解释矩阵分解方法,如奇异值分解(SVD)和主成分分析(PCA),以展示它们在数据降维和特征提取中的应用。
目录
1. 矩阵与向量的基础概念
1.1 向量
向量是具有大小和方向的量,通常表示为一个有序的数列。在数学上,向量可以表示为:
\[
\mathbf{v} = \begin{bmatrix} v_1 \