【人工智能数学基础篇】——深入详解矩阵与向量运算及矩阵分解技术,打牢人工智能知识基础

 深入详解矩阵与向量运算及矩阵分解技术

        在人工智能和机器学习领域,矩阵与向量运算以及矩阵分解技术是基础且关键的数学工具。它们在数据处理、特征提取、降维、模型训练等多个环节中发挥着重要作用。本文将深入探讨矩阵与向量的基本运算,理解其性质,并详细解释矩阵分解方法,如奇异值分解(SVD)和主成分分析(PCA),以展示它们在数据降维和特征提取中的应用。

目录

 深入详解矩阵与向量运算及矩阵分解技术

 1. 矩阵与向量的基础概念

 1.1 向量

1.2 矩阵

2. 矩阵与向量的基本运算

 2.1 矩阵加法与减法

2.2 矩阵乘法

 2.3 标量乘法

 2.4 转置与逆矩阵

3. 矩阵运算的性质

 3.1 结合律

 3.2 分配律

 3.3 交换律

 4. 矩阵分解技术

4.1 奇异值分解(SVD)

    4.1.1 定义与公式

4.1.2 SVD的几何意义

 4.1.3 SVD的应用

 4.2 主成分分析(PCA)

4.2.1 定义与步骤

4.2.2 PCA与SVD的关系

4.2.3 PCA的应用

 5. 矩阵分解在数据降维和特征提取中的应用实例

 示例1:使用SVD进行数据降维

示例2:使用PCA进行特征提取

 6. 总结

参考资料


 1. 矩阵与向量的基础概念

 1.1 向量


向量是具有大小和方向的量,通常表示为一个有序的数列。在数学上,向量可以表示为:
\[
\mathbf{v} = \begin{bmatrix} v_1 \

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿享天开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值