PyTorch实战-实现神经网络图像分类基础Tensor最全操作详解(一)

本文介绍了PyTorch中的核心数据结构Tensor,包括其定义、使用场景、创建方式、形状操作、索引和切片技巧。讲解了从列表、NumPy数组和特定初始化方法创建Tensor,以及如何处理张量的维度、大小和修改。适合深度学习初学者快速上手。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

一、PyTorch数据结构-Tensor

1.什么是Tensor

2.数据Tensor使用场景

3.张量形态

标量(0D 张量)

 向量(1D 张量)

矩阵(2D张量)

3D 张量与高维张量

二、Tensor的创建

1. 从列表或NumPy数组创建

 2. 使用特定的初始化方法

 3. 从已有的Tensor创建

 三、Tensor的形状操作

1.查看大小和维度

2. 改变 Tensor 的形状

3. 移除和增加Tensor 的维度

 4.交换Tensor 维度

 5.拼接和堆叠Tensor

  6.拆分Tensor

 四、Tensor索引和切片

1.索引

 2.切片

3.通过索引和切片修改 Tensor

(1).修改单个元素的值

 (2).修改整行或整列

4.高级索引

(1).使用列表作为索引

 (2).使用布尔值作为索引(掩码)

 (3).使用 torch 的索引函数

点关注,防走丢,如有纰漏之处,请留言指教,非常感谢


前言

PyTorch可以说是三大主流框架中最适合初学者学习的了,相较于其他主流框架,PyTorch的简单易用性使其成为初学者们的首选。这样我想要强调的一点是,框架可以类比为编程语言,仅为我们实现项目效果的工具,也就是我们造车使用的轮子,我们重点需要的是理解如何使用Torch去实现功能而不要过度在意轮子是要怎么做出来的,那样会牵扯我们太多学习时间。以后就出一系列专门细解深度学习框架的文章,但是那是较后期我们对深度学习的理论知识和实践操作都比较熟悉才好开始学习,现阶段我们最需要的是学会如何使用这些工具。

深度学习的内容不是那么好掌握的,包含大量的数学理论知识以及大量的计算公式原理需要推理。且如果不进行实际操作很难够理解我们写的代码究极在神经网络计算框架中代表什么作用。不过我会尽可能将知识简化,转换为我们比较熟悉的内容,我将尽力让大家了解并熟悉神经网络框架,保证能够理解通畅以及推演顺利的条件之下,尽量不使用过多的数学公式和专业理论知识。以一篇文章快速了解并实现该算法,以效率最高的方式熟练这些知识。


博主专注数据建模四年,参与过大大小小数十来次数学建模,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。此专栏的目的就是为了让零基础快速使用各类数学模型、机器学习和深度学习以及代码,每一篇文章都包含实战项目以及可运行代码。博主紧跟各类数模比赛,每场数模竞赛博主都会将最新的思路和代码写进此专栏以及详细思路和完全代码。希望有需求的小伙伴不要错过笔者精心打造的专

评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanstuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值