作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在电力电子领域,两电平三相逆变器作为常用的电能转换装置,广泛应用于新能源发电、电机驱动等诸多场合。然而,其输出电压和电流中不可避免地含有谐波成分,这些谐波会导致电能质量下降、设备发热增加以及额外的功率损耗等问题。选择性谐波消除脉宽调制(SHEPWM)技术作为一种有效的谐波抑制手段,通过合理控制逆变器的开关时刻,能够针对性地消除特定次数的谐波,在降低谐波含量的同时减少开关损耗,提高系统效率。研究每四分之一周期具有 3、5 和 7 个开关角的三相两电平逆变器的 SHEPWM 技术,对于进一步优化逆变器性能、提升电力系统稳定性和可靠性具有重要意义。
二、SHEPWM 基本原理
两电平三相逆变器结构
两电平三相逆变器主要由直流电源、六个功率开关器件(如 IGBT)以及三相负载构成。其拓扑结构呈三相桥式,通过控制开关器件的导通与关断,将直流电能转换为交流电能输出。在工作过程中,每相桥臂上的两个开关器件互补导通,使得输出电压在直流母线电压的正半值和负半值之间切换,从而形成两电平的输出波形。
双极波形特点
在 SHEPWM 双极波形模式下,逆变器同一桥臂的两个开关器件在一个周期内交替导通,输出电压在正、负直流母线电压之间切换。这种双极波形能够有效利用直流母线电压,并且在谐波抑制方面具有独特优势,相较于单极波形,其对高频载波的依赖程度较低,在一定程度上降低了开关损耗。
三、每四分之一周期不同开关角数量的 SHEPWM 分析
每四分之一周期 3 个开关角
开关角分布与调制策略
在每四分之一周期设置 3 个开关角时,一个基波周期内共 12 个开关角。这些开关角的分布需根据所要消除的谐波次数进行精确计算。一般而言,首先确定基波幅值的目标值,然后通过联立方程组,将特定谐波(如 5 次、7 次等)幅值设为零,求解得到开关角的具体值。在调制过程中,根据这些开关角控制逆变器开关器件的通断,使得输出电压波形在一个周期内呈现出特定的脉冲序列。
谐波消除效果
理论分析和仿真结果表明,每四分之一周期 3 个开关角的 SHEPWM 能够有效消除较低次数的主要谐波,如 5 次、7 次谐波。但对于更高次数的谐波,由于开关角数量有限,其抑制能力相对较弱。通过傅里叶分析可知,在消除目标谐波后,输出电压的总谐波失真(THD)可降低至一定水平,显著改善了电能质量。然而,当负载特性发生变化时,可能会对谐波消除效果产生一定影响,需要进一步优化控制策略。
每四分之一周期 5 个开关角
开关角分布与调制策略
每四分之一周期 5 个开关角意味着一个基波周期内有 20 个开关角,更多的开关角提供了更灵活的控制自由度。此时,开关角的计算和分布更加复杂,不仅要考虑消除低次谐波,还可兼顾一些中高次谐波。通常采用优化算法(如牛顿 - 拉夫逊法)来求解满足谐波消除条件的开关角方程组,以获得更精确的开关角值。在调制过程中,严格按照计算得到的开关角顺序控制开关器件,确保输出电压波形符合设计要求。
谐波消除效果
相较于 3 个开关角的情况,每四分之一周期 5 个开关角的 SHEPWM 能够更全面地抑制谐波。除了有效消除 5 次、7 次等低次谐波外,对 11 次、13 次等中高次谐波也有较好的抑制效果,可使输出电压的 THD 进一步降低,电能质量得到更显著的提升。在不同负载条件下,该方案表现出更强的适应性,能够保持较为稳定的谐波消除性能,为对电能质量要求较高的应用场合提供了更可靠的解决方案。
每四分之一周期 7 个开关角
开关角分布与调制策略
每四分之一周期 7 个开关角,即一个基波周期内有 28 个开关角,极大地丰富了开关角的组合方式。为了确定这些开关角,需要建立更复杂的数学模型,并运用先进的优化算法(如遗传算法、粒子群优化算法等)进行求解。这些算法能够在庞大的解空间中搜索到最优的开关角组合,以实现对多种谐波的同时消除。在实际调制过程中,需要高精度的控制器来精确控制开关器件的导通和关断时刻,确保输出波形的准确性。
谐波消除效果
这种配置下的 SHEPWM 具有卓越的谐波消除能力,能够几乎完全消除低次和中高次谐波,使输出电压波形近乎正弦波,THD 可降低至极低水平。在面对各种复杂的负载特性时,包括非线性负载,都能维持良好的谐波抑制效果,为对电能质量极为敏感的设备提供高质量的电源。然而,由于开关角数量众多,对控制器的计算能力和响应速度要求极高,增加了系统的硬件成本和控制复杂度。
四、解决方案实施要点
开关角计算方法
针对不同的开关角数量,采用合适的计算方法至关重要。对于 3 个开关角的简单情况,可通过直接求解非线性方程组来确定开关角。而对于 5 个和 7 个开关角的复杂情形,优化算法的选择尤为关键。以遗传算法为例,首先随机生成一组开关角作为初始种群,然后根据谐波消除目标定义适应度函数,通过选择、交叉和变异等操作不断进化种群,直至找到最优的开关角组合。在实际应用中,需根据系统要求和计算资源合理选择算法,并对算法参数进行优化,以提高计算效率和求解精度。
控制器设计
为实现精确的 SHEPWM 控制,需要设计高性能的控制器。常用的控制器包括数字信号处理器(DSP)和现场可编程门阵列(FPGA)。DSP 具有强大的数字运算能力,能够快速执行复杂的控制算法,适用于对计算精度要求较高的场合。FPGA 则具有并行处理能力和高速响应特性,可实现实时的开关信号生成和控制。在控制器设计过程中,需根据系统的实时性要求、计算复杂度以及成本等因素综合考虑,选择合适的硬件平台,并进行相应的软件编程,实现对开关角的精确控制和逆变器的稳定运行。
系统稳定性与可靠性
在实施 SHEPWM 解决方案时,必须充分考虑系统的稳定性和可靠性。一方面,由于开关器件的频繁通断,可能会产生电磁干扰(EMI),影响系统中其他设备的正常运行。因此,需要采取有效的 EMI 抑制措施,如合理布局电路、使用屏蔽线和滤波电路等。另一方面,系统在运行过程中可能会遇到各种故障,如开关器件短路、开路等。为提高系统的可靠性,应设计完善的故障检测与保护机制,能够及时检测到故障并采取相应的保护措施,如封锁开关信号、报警等,确保系统在故障情况下不会进一步损坏,并能在故障排除后迅速恢复正常运行。
五、结论
每四分之一周期具有 3、5 和 7 个开关角的三相两电平逆变器的 SHEPWM 技术为消除谐波提供了多种有效的解决方案。不同开关角数量的方案在谐波消除能力、控制复杂度和系统成本等方面各有优劣。3 个开关角方案简单易行,适用于对谐波抑制要求不太高的场合;5 个开关角方案在谐波消除效果和控制复杂度之间取得了较好的平衡,具有广泛的应用前景;7 个开关角方案则能实现极高的谐波抑制性能,适用于对电能质量要求苛刻的高端应用。在实际应用中,应根据具体的系统需求、负载特性以及成本限制等因素,综合考虑选择合适的开关角配置和相应的解决方案实施要点,以实现两电平三相逆变器的高效、稳定运行,提高电力系统的整体性能和电能质量。
⛳️ 运行结果
🔗 参考文献
[1] 费万民,吕征宇,姚文熙.多电平逆变器特定谐波消除脉宽调制方法的仿真研究[J].中国电机工程学报, 2004, 24(1):5.DOI:10.3321/j.issn:0258-8013.2004.01.020.
[2] 费万民,阮新波,张艳莉,等.多电平逆变器特定谐波消除脉宽调制方法的初值问题研究[J].中国电机工程学报, 2007, 27(13):6.DOI:10.3321/j.issn:0258-8013.2007.13.016.
[3] 黄银银,费万民.两电平逆变器半周期对称SHEPWM方法[J].电力自动化设备, 2013, 33(4):6.DOI:CNKI:SUN:DLZS.0.2013-04-022.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇