重建二叉树(C++中等区)

本文详细解析了如何使用前序遍历和中序遍历结果重建二叉树的算法,通过递归方法确定根节点,并划分左子树和右子树,最终实现树的完整重建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重建二叉树

题目:输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。

例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
在这里插入图片描述

限制:
0 <= 节点个数 <= 5000


解题思路

首先我的想法是,一般我们看到树的这类问题,可以想想能否用递归的方法解决。这题用递归思想比较好理解。
题目给定的是树的前序和中序,我们首先可以根据树的前序的特性可知,前序序列的第一个为树的根节点,然后根节点将中序序列一分为二,左边为左子树,右边为右子树。根据图例可知,根节点为3。
在这里插入图片描述
因为我们知道树的左右子树同样是树,于是就引出了递归的解法。
我们首先来确定递归结束条件:当中序序列的第一个元素(树的最左节点)与最后一个元素(树的最右节点)相等时,可以判断这棵树为空。若不相等,则将前序序列第一个节点作为树的根节点。同时通过find函数找到中序序列中根节点的位置,返回其所指迭代器(pos)。通过通过pos-ib(注:ib为中序序列开始位置)得到左子树的个数。然后由于前序序列第一个作为树的根节点,所以可以判断出左子树开始位置为pb(注:pb为前序序列开始位置)+1,pb+1+(pos-ib)为前序序列左子树结束位置,同时可以得知中序序列左子树部分为[ib,pos)(注:所有的区间都是左闭右开的区间)。在这里插入图片描述

于是利用递归重建左子树,代码如下:

tree->left=build(pb+1,pb+1+(pos-ib),ib,pos);

同理可得,前序序列右子树区间为[pb+1+(pos-ib),pe),中序序列右子树区间为[pos+1,ie)。于是我们可以递归创建右子树,代码如下:

tree->right=build(pb+1+(pos-ib),pe,pos+1,ie);

最后返回创建完的完整树。


1.代码实现

代码如下:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        //利用递归的思想
        return build(preorder.begin(),preorder.end(),inorder.begin(),inorder.end());
    }
    TreeNode* build(vector<int>::iterator pb,vector<int>::iterator pe,vector<int>::iterator ib,vector<int>::iterator ie)
    {
        //如果满足ib==ie,则树为空
        if(ib==ie)
        return NULL;
    
        //根据前序遍历的特点,创建出树的根节点
        TreeNode* tree=new TreeNode(*pb);
        //通过find算法找到中序遍历结果中根节点的位置
        auto pos=find(ib,ie,*pb);

        //注意1:区间是左闭右开
        //注意2:这里最后一个参数pos不需要加1是因为其指向的是树的根节点
        tree->left=build(pb+1,pb+1+(pos-ib),ib,pos);//递归创建左子树
        //递归创建右子树
        tree->right=build(pb+1+(pos-ib),pe,pos+1,ie);
    
        return tree;
    }
};
执行用时:60 ms, 在所有 C++ 提交中击败了43.21%的用户
内存消耗:26.1 MB, 在所有 C++ 提交中击败了23.25%的用户

注意事项

注意1:所有区间都是左闭右开;
注意2:重建左子树最后一个参数pos不需要加1是因为其指向的是树的根节点(左闭右开)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值