一、神经网络
神经网络通过隐层(中间层)的变换,增加了超平面的划分能力。然而,在对神经网络的学习中,没有看到关于隐层神经元数量选择的解释。也就是说,在神经网络理论中似乎并没有考虑到网络结构对输出结果产生的影响。
二、代码实现
def calculate(self, input_values):
"""
:param input_values: [color root ...]
:return: [y1, y2 ...]
"""
# 隐层神经元的输出
bs = []
for h in range(self.mid_num):
alpha = 0
for i in range(self.input_num):
alpha += input_values[i] * self.neron_group['input'][i]['weight'][h]
# 激活函数作用
b = self.active_function(alpha - self.neron_group['mid'][h]['threshold'])
bs.append(b)
# 输出层神经元的输出
ys = []
for j in range(self.output_num):
beta = 0
for h in range(self.mid_num)<