机器学习(周志华)学习笔记五:第五章习题5.5

本文探讨了神经网络中隐层神经元数量对输出结果的影响,指出在学习过程中这一因素的重要性。虽然神经网络通过中间层增强超平面划分能力,但如何选择合适的隐层神经元数量在理论中并未深入讲解。程序实现部分和补充信息则提供了实践应用的视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、神经网络

神经网络通过隐层(中间层)的变换,增加了超平面的划分能力。然而,在对神经网络的学习中,没有看到关于隐层神经元数量选择的解释。也就是说,在神经网络理论中似乎并没有考虑到网络结构对输出结果产生的影响。

二、代码实现

    def calculate(self, input_values):
        """

        :param input_values: [color root ...]
        :return: [y1, y2 ...]
        """
        # 隐层神经元的输出
        bs = []
        for h in range(self.mid_num):
            alpha = 0
            for i in range(self.input_num):
                alpha += input_values[i] * self.neron_group['input'][i]['weight'][h]
            # 激活函数作用
            b = self.active_function(alpha - self.neron_group['mid'][h]['threshold'])
            bs.append(b)

        # 输出层神经元的输出
        ys = []
        for j in range(self.output_num):
            beta = 0
            for h in range(self.mid_num)<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萌哒哒虎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值