医疗电子中EEG数字信号处理的5H科普
1. What(是什么)——核心概念与频段划分
EEG信号是大脑神经活动的电生理记录,频率范围通常在 0.5-35 Hz,分为多个频段:
- δ(Delta, 0.5-4 Hz) :深度睡眠或病理状态。
- θ(Theta, 4-8 Hz) :浅睡眠或冥想状态。
- α(Alpha, 8-12 Hz) :放松、闭眼时的主导频段。
- β(Beta, 12-30 Hz) :专注、思考时的活动。
- γ(Gamma, >30 Hz) :认知处理或感觉整合。
用户可根据需求自定义频段,例如添加高频Gamma分析。
2. How(如何工作)——时频域与频域转换
- 频域分析:通过傅里叶变换(FFT)将时域信号转为频域,显示各频率的功率分布,例如发现α波在闭眼时增强。
- 时频分析:结合时间和频率的动态变化,常用短时傅里叶变换(STFT)或小波变换,捕捉事件相关同步/去同步(如ERS/ERD),例如研究注意力集中时的β波变化。
3. Why(为何重要)——滤波器的关键作用
滤波器用于去除噪声并提取目标频段:
- 低通滤波器(高切) :保留低于截止频率的信号,例如30 Hz以下,去除肌肉活动等高频噪声。
- 高通滤波器(低切) :保留高于截止频率的信号,例如0.5 Hz以上,消除基线漂移或出汗引起的低频干扰。
- 带阻滤波器(陷波) :消除特定频率干扰(如50/60 Hz工频噪声),避免电源线干扰污染信号。
4. Where(应用场景)——参数设置与实例
- 截止频率:低通常设为30-90 Hz,高通设为0.1-4 Hz。例如,SSVEP识别中常用4 Hz高通和90 Hz低通。
- 阶数与陡度:高阶滤波器(如8阶切比雪夫型)截止更陡峭,但可能引入相位延迟;低阶(如4阶)更平缓,适合保留信号完整性。
- 防混叠:采样率需高于信号最高频率的2倍(Nyquist定律),例如200 Hz采样率需用低通滤除100 Hz以上成分。
5. How to(如何操作)——注意事项与陷阱
- 零相位滤波:避免非因果滤波器(如FIR)引起时间偏移,影响ERP分析的潜伏期判断。
- 信息损失权衡:下采样(如从1000 Hz降至200 Hz)可减少计算量,但需确保保留有效频段。
- 伪影风险:过度滤波可能导致信号失真,如高频Gamma活动被误滤除,需结合任务需求调整参数。
总结:EEG数字信号处理通过频段划分、时频转换和滤波技术,从复杂噪声中提取有效神经活动信息。合理选择滤波器类型、截止频率和阶数,是平衡去噪与信号保真的关键。