自动机、文法与语言:理论与应用
有限状态自动机
有限状态自动机是一种特殊的有限状态机,由于其与语言的紧密联系而备受关注。
定义与基本概念
有限状态自动机 (A = (I, O, S, f, g, σ)) 是一种有限状态机,其输出符号集为 ({0, 1}),且当前状态决定最后输出。最后输出为 1 的状态称为接受状态。例如,给定如下转移表:
| (f) | (I) | | (g) | (I) | |
| — | — | — | — | — | — |
| (S) | (a) | (b) | (S) | (a) | (b) |
| (\sigma_0) | (\sigma_1) | (\sigma_0) | (\sigma_0) | (1) | (0) |
| (\sigma_1) | (\sigma_2) | (\sigma_0) | (\sigma_1) | (1) | (0) |
| (\sigma_2) | (\sigma_2) | (\sigma_0) | (\sigma_2) | (1) | (0) |
其转移图中,若处于状态 (\sigma_0),最后输出为 0;处于状态 (\sigma_1) 或 (\sigma_2),最后输出为 1,所以这是一个有限状态自动机,接受状态为 (\sigma_1) 和 (\sigma_2)。有限状态自动机的转移图通常将接受状态用双圈表示,并省略输出符号。
另一种定义方式
有限状态自动机 (A) 也可看作由以下部分组成:
1. 有限的输入符号集 (I)
2. 有限的状态集 (S)
3.