如何使用DeepSeek与LangChain集成开发AI应用


要使用DeepSeek与LangChain集成开发AI应用,需要安装必要的库到实例化模型、调用API以及处理响应的全过程。

安装LangChain和DeepSeek库

安装LangChain

首先,您需要安装LangChain库。可以使用以下命令通过pip安装:

pip install --upgrade langchain-core langchain-openai

安装DeepSeek库

DeepSeek库可以通过OpenAI的API进行安装。确保您已经安装了OpenAI的依赖库:

pip install -U openai

申请DeepSeek API Key

创建DeepSeek账户

访问DeepSeek开放平台(https://platform.deepseek.com/sign_in)并登录,然后注册一个新账户。填写有效的电子邮箱地址或手机号码,并设置一个安全的密码。接受使用条款和隐私政策后,完成注册流程。

生成API Key

登录账户后,进入API平台,导航至API密钥部分。点击“创建新API密钥”按钮,为新密钥命名并生成。生成后,立即复制并妥善保存API密钥。

实例化DeepSeek模型对象

导入必要的模块

在Python代码中,导入必要的模块:

from langchain_openai.chat_models.base import BaseChatOpenAI

实例化模型对象

使用LangChain的BaseChatOpenAI类来实例化DeepSeek模型对象。您需要提供模型名称(如deepseek-v3deepseek-r1)、API Key和API Base URL:

model = BaseChatOpenAI(
    model="deepseek-v3",
    temperature=0,
    openai_api_key="your_api_key",
    openai_api_base='https://api.deepseek.com/v1'
)

调用API进行交互

调用模型

使用实例化的模型对象调用invoke方法,向DeepSeek模型发起提问:

response = model.invoke("Hello world.")
print(response.content)

处理流式响应

如果需要处理流式响应,可以将stream参数设置为True

response = model.invoke("Hello world.", stream=True)
for message in response:
    print(message.content)

处理响应

解析响应

根据API返回的响应内容,解析模型的输出文本和其他相关信息。响应通常包含模型的输出文本和其他元数据,如token使用情况、模型名称等:

response_metadata = response.response_metadata
print(response_metadata)

通过以上步骤,可以成功地将DeepSeek与LangChain集成,并开发出能够利用DeepSeek大模型能力的AI应用。这些步骤涵盖了从安装必要的库到实例化模型、调用API以及处理响应的全过程,确保能够顺利地开发和部署AI应用。

✍️相关问答

DeepSeek与LangChain集成开发AI应用的优势有哪些

DeepSeek与LangChain集成开发AI应用的优势包括:

高性能与低成本: DeepSeek在性能上能够比肩OpenAI的O1模型,而训练成本却远低于O1,这使得DeepSeek在成本效益方面具有显著优势。

多模态能力: DeepSeek不仅支持文本处理,还能处理图像、音频和视频等多种数据类型,这在安防监控、自动驾驶、语音助手等领域具有广泛的应用前景。

中文能力专项提升: DeepSeek针对中文语言特点和用户使用习惯进行了专项优化,能够精准理解用户输入的细微差别和复杂语义,提升了中文用户的使用体验。

开源与开放: DeepSeek模型完全开源,代码和论文全部公开,用户可以免费使用并复刻“AI神话”,这推动了整个AI领域的发展和创新。

技术创新: DeepSeek采用了混合专家(MoE)架构和多头潜在注意力机制(MLA)等创新架构,通过强化学习实现了推理能力的显著提升,无需监督微调,大幅降低了数据标注成本。

应用场景广泛: DeepSeek在金融、医疗、代码生成等垂直领域表现出色,能够提供更精准的答案和建议,推动了行业从“造模型”到“用模型”的转变。

提升开发效率: LangChain作为一个功能强大的框架,帮助开发人员使用语言模型构建端到端的应用程序,简化了创建由大型语言模型支持的应用程序的过程,降低了开发者的学习成本。

如何使用DeepSeek API进行图像识别

要使用DeepSeek API进行图像识别,您可以按照以下步骤进行:

注册并登录DeepSeek平台:

访问DeepSeek官方网站(https://platform.deepseek.com/)并注册一个账号。
登录后,进入用户控制台。
创建API密钥:

在控制台中找到“API管理”选项。
点击“生成API密钥”,保存生成的密钥,这将用于后续调用API。
准备图像文件:

确保您有一张要识别的图像文件,并知道其存储路径。
编写代码调用API:

使用Python编写代码,导入requests库,设置API的URL、请求头和请求体。
发送POST请求,将图像文件作为参数传递给API。
处理API返回的响应结果。
以下是一个简单的Python示例代码:

import requests

# 替换为您的 API 密钥
API_KEY = "your_api_key_here"

# 上传图片文件
files = {"image": open("path_to_your_image_file.jpg", "rb")}
headers = {"Authorization": f"Bearer {API_KEY}"}

# 发送请求
response = requests.post("https://api.platform.deepseek.com/vision/analyze", files=files, headers=headers)

# 输出结果
print(response.json())

处理响应结果:
API返回的响应通常包含识别出的对象、位置和置信度等信息。
可以根据需要对结果进行进一步处理,如筛选、导出或可视化呈现。
请注意,具体的API端点和参数可能会根据DeepSeek平台的更新而有所变化,建议参考最新的官方文档以获取准确的信息。

LangChain框架有哪些其他常用的组件

LangChain框架除了之前提到的PromptTemplate和LLMs组件外,还有以下常用的组件:

Chain(链): 用于将多个模型或功能模块组合成复杂的工作流,例如先从用户输入中提取关键信息,然后用提取的信息生成新的文本,最后返回结构化的响应。

OutputParser(输出解析器): 用于解析模型输出的字符串,转换为所需的格式,如JSON对象等。

Memory(记忆): 用于存储上下文信息,使模型能够记住对话历史,提供更连贯的交互体验。

Agents(代理): 通过“代理”让大模型自主调用外部工具和内部工具,使智能Agent成为可能。

Retrieval(检索): 用于从外部数据源检索信息,支持RAG(Retrieval-Augmented Generation)功能,缓解LLM知识更新的问题。

LangServe: 用于将LangChain链部署为REST API,方便通过网络进行访问和使用。

LangSmith: 一个开发平台,提供调试、测试、评估和监控基于任何LLM框架构建的链,并与LangChain无缝集成。

🧐脑图

在这里插入图片描述

### 如何将DeepSeekLangChain集成 #### 安装依赖项 要实现DeepSeekLangChain集成,首先需要安装必要的Python包。这通常包括`deepseek-core`其他支持库。 ```bash pip install deepseek-core langchain-community openai ``` #### 导入所需模块并设置环境变量 确保导入所有必需的模块,并配置API密钥以便顺利操作。 ```python import os from langchain_community.vectorstores import DeepLake from langchain_community.embeddings.openai import OpenAIEmbeddings os.environ["OPENAI_API_KEY"] = 'your_openai_api_key' ``` #### 创建嵌入模型实例 通过指定参数创建一个基于OpenAI API的嵌入对象,此过程有助于后续文档编码工作。 ```python embedding_model = OpenAIEmbeddings( api_key=os.getenv('OPENAI_API_KEY'), endpoint='https://api.openai.com/v1/embeddings' # 此处应替换为实际端点URL ) ``` #### 构建DeepLake数据集路径 定义存储位置以及是否启用张量数据库特性,这对于高效管理检索矢量化后的文本至关重要[^1]。 ```python dataset_path = f"hub://{username}/langchain-deepseek" runtime_options = {"tensor_db": True} ``` #### 向DeepLake上传预处理过的文本片段及其对应的嵌入向量 利用之前准备好的组件完成这一关键步骤,从而建立起可供查询的知识图谱结构。 ```python db = DeepLake.from_documents( documents=texts, embeddings=embedding_model, dataset_path=dataset_path, runtime=runtime_options ) ``` 上述流程展示了如何借助LangChain框架下的工具链轻松地把来自不同源的数据整合到一起,并通过DeepSeek平台提供的强大功能对其进行深层次分析应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LCG元

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值