目录
一、技术方案核心模块与算法实现
1. 数据采集与预处理模块
功能:整合多源异构临床数据(结构化数据、影像、文本),清洗、标准化并提取特征。
伪代码:
def data_preprocessing(raw_data):
# 数据清洗:处理缺失值、异常值
clean_data = handle_missing_values(raw_data)
clean_data = remove_outliers(clean_data)
# 特征工程:数值归一化、类别编码、影像特征提取
normalized_data = normalize(clean_data)
encoded_data = encode_categorical(normalized_data)
image_features = extract_image_features(clean_data["imaging"])
# 数据融合:合并多模态特征
merged_data = merge_features(encoded_data, image_features)
return merged_data
2. 大模型预测模块
功能:基于预训练大模型(如Transformer)预测疾病风险、手术效果及并发症概率。
伪代码:
def predict_risk(model, input_data):
# 输入数据嵌入与编码
embedded_data = model.encode(input_data)
# 风险预测:并发症、手术成功率、术后恢复
complications_risk = model.predict("complications", embedded_data)
surgery_success = model.predict("surgery_success", embedded_data)
recovery_time = model.predict("recovery_time", embedded_data)
return {
"complications_risk": complications_risk,
"surgery_success": surgery_success,
"recovery_time": recovery_time
}
3. 个性化手术规划模块
功能:结合预测结果生成动态手术方案与麻醉策略。
伪代码:
def generate_surgery_plan(predictions, patient_data):
# 根据并发症风险调整手术范围
if predictions["complications_risk"] > threshold:
surgery_scope = "minimally_invasive"
else:
surgery_scope = "standard"
# 麻醉方案优化:剂量与药物选择
anesthesia_dose = calculate_dose(patient_data, predictions)
anesthesia_plan = select_anesthesia(anesthesia_dose)
return {
"surgery_scope": surgery_scope,
"anesthesia_plan": anesthesia_plan
}