1 算法实现伪代码
1.1 多模态融合大模型
class MultimodalEpilepsyNet(nn.Module):
def __init__(self):
super().__init__()
self.mri_encoder = ResNet3D(out_dim=512)
self.eeg_encoder = Transformer1D(out_dim=512)
self.text_encoder = ClinicalBERT(out_dim=512)
self.cross_attn = CrossAttention(d_model=512, nhead=8)
self.classifier = nn.Sequential(
nn.Linear(512, 256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 1)
)
def forward(self, mri, eeg, text):
z_mri = self.mri_encoder(mri)
z_eeg = self.eeg_encoder(eeg)
z_text = self.text_encoder(text)
z = torch.stack([z_mri, z_eeg, z_text], dim=1)
z = self.cross_attn(z).mean(dim=1)
prob = torch.sigmoid(self.classifier(z))
return prob
1.2 术中轻量化蒸馏模型
class LiteEpilepsyNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1d = nn.Conv1d(19, 64, kernel_size=7, stride=1, padding=3)
self.tf = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model=64, nhead=4),
num_layers=2)
self.head = nn.Linear(64, 1)
def forward(self, x):
x = x.transpose(1, 2)
x = self.conv1d(x)
x = x.transpose(1, 2)
x = self.tf(x)[:, -1, :]
return torch.sigmoid(self.head(x))
2 模块级详细流程图
2.1 数据采集与脱敏系统 DAPS

2.2 多模态训练系统 MMTS

2.3 实时推理与决策系统 RIDS