5G NR 链路自适应 Link Adaptation

本文探讨了无线通信中的链路自适应技术,包括功率调整、编码速率选择及调制方式等关键概念。介绍了如何根据信道条件动态调整传输参数以优化系统性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无线信道是时刻变化的,主要因素有:

  • 频率选择性衰落 frequency selective fading
  • 阴影衰落 shadow fading
  • 路径损耗 path loss

链路自适应目的

为了优化一定传输功率下的系统容量和覆盖,发送器应该去匹配数据传输速率和接收信号质量。这种优化被称为链路自适应。

简而言之,信道的变化,要求传输参数也需要自适应的调整。

自适应的具体内容

功率调整

在circuit-swtiched voice 中,需要constant data rate
但是基于package-data traffic业务中,constant data rate 不再是一个严重的问题,只要平均速率能平稳就OK。

编码速率

对于给定的modulation,编码速率可以根据链路情况进行选择。低编码速率在差的信道环境下使用,高编码速率在高的SINR条件下使用。

Modulation 方法

Low-order modulation, QPSK, 抗干扰性强,但是码率低。

High-order modulation, 256QAM,虽然有很高的码率,但是抗抗看绕行弱,只有在SINR非常好的情况下才使用high-order modulation。

BS根据链路自适应算法来选择MCS,算法的设计有很多种,可以计算PUSCH和BER/BLER或者是DMRS和SRS。但是SRS是用来获取那一段频谱资源可以调度,所以它常常用来做资源映射,对PUSCH的MCS选择的影响很小。

SINR对仿真中的MCS的门限,不能确保可以完全用于实际信道中的FER。为了解决这一问题,基站需要估计上行链路错误,比如transport block error rate 或者code block group error rate;通过OLRC修改SINR信息。基站可以利用ACK/NACK的信息来估计上行链路错误。

###整体流程

  1. 当基站接收到来自UE的PUSCH的时候,基站根据DMRS测量PUSCH的UL SINR。
  2. 如果PUSCH中有MAC PDU,modem也要汇报CRC结果。
  3. 只要有modem上报UE的SINR,链路自适应模块更新UE的SINR。IIR滤波用来更新SINR [接1]
  4. CRC的结果用来调节OLRC offset [接2].
  5. 滤波后的SINR和OLRC -> 有效SINR。
  6. 根据链路仿真,有效SINR被用来做MPR和MCS的映射。
  7. 链路自适应模块将UE的MPR传递给QoS/PF调度器,以计算scheduling metric。
  8. 链路自适应模块将MCS传递给资源分配模块,用来计算RB。
### KNN 和 OFDM 链路自适应在 MATLAB 中的实现 #### KNN算法简介 K近邻(K-Nearest Neighbor, KNN)是一种监督学习方法,在分类和回归方面都有应用。该算法的核心思想是在特征空间中找到距离待预测样本最近的k个训练样本,然后基于这k个邻居的信息来进行决策[^1]。 对于KNN在MATLAB中的基本实现可以参考如下代码: ```matlab % 加载数据集并准备测试数据 load fisheriris; X = meas(:, 3:4); % 使用花瓣长度和宽度作为特征 Y = species; % 类别标签 newpoint = [5 1.4]; % 新的数据点用于预测 % 创建KNN模型 mdl = fitcknn(X,Y,'NumNeighbors',5); % 对新数据点进行预测 predictedClass = predict(mdl,newpoint); disp(['Predicted class is ', char(predictedClass)]); ``` 此段代码展示了如何加载Iris数据集的一部分,并创建了一个五近邻(k=5)的KNN分类器来对新的观测值做出类别预测[^2]。 #### OFDM链路自适应概述 正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术通过将信道分成多个子载波从而有效对抗多径效应带来的频率选择性衰落。链路自适应(Link Adaptation)是指根据当前无线环境动态调整传输参数(如调制方式、编码率),以优化性能的同时保持通信质量[^3]。 下面是一个简单的OFDM系统仿真框架,其中包括了基础的发送端与接收端处理过程以及一些常见的链路自适应机制模拟: ```matlab function ofdm_simulation() % 参数设置 numSymbols = 100; % 符号数量 fftSize = 64; % FFT大小 (即子载波数) cpLength = 16; % 循环前缀长度 % 发送端操作 dataBits = randi([0 1],numel(numSymbols)*log2(modulationOrder),1); modulatedData = qammod(dataBits, modulationOrder, 'UnitAveragePower', true); % IFFT变换得到时域信号 timeDomainSignal = ifft(ifftshift(modulatedData)); % 添加循环前缀(CP),防止ISI干扰 tx_signal = addCyclicPrefix(timeDomainSignal,cpLength); % 假设理想AWGN信道传播 rx_signal = awgn(tx_signal, snr_dB, 'measured'); % 接收端移除CP后做FFT恢复原始信息 receivedTimeDomain = removeCyclicPrefix(rx_signal,cpLength); recoveredFreqDomain = fftshift(fft(receivedTimeDomain)); demodulatedData = qamdemod(real(recoveredFreqDomain), modulationOrder); end function out=addCyclicPrefix(in,cpLen) N=length(in)/size(in,2); out=[in(end-cpLen+1:end,:); in]; end function out=removeCyclicPrefix(in,cpLen) [~,cols]=size(in); rows=length(in)/cols; out=in(cpLen+1:end,:); end ``` 上述代码提供了一种简化版的OFDM发射机到接收机流程描述,其中包含了QAM调制解调函数`qammod/qamdemod`, 并实现了添加/去除循环前缀的功能。为了更贴近实际应用场景下的链路自适应需求,可以根据实时估计信噪比(SNR)情况改变调制阶数(`modulationOrder`)或采用不同的纠错码方案等措施进一步增强系统的鲁棒性和灵活性[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值