摘要: N 后问题说明, 一山不容二只母老虎.
1. 代码
先上代码, 再说废话.
#include <stdio.h>
#include <malloc.h>
#include <math.h>
#include <stdbool.h>
#include <stdlib.h>
/**
* Place it there, applicable?
*/
bool place(int* paraSolution, int paraT){
int j;
for (j = 1; j < paraT; j ++){
if ((abs(paraT - j) == abs(paraSolution[j] - paraSolution[paraT])) || (paraSolution[j] == paraSolution[paraT]))
return false;
}//Of for
return true;
}//Of place
/**
* Backtracking.
*/
void backtracking(int* paraSolution, int paraN, int paraT){
int i;
if (paraT > paraN){
for (i = 1; i <= paraN; i ++)
printf("%d ", paraSolution[i]);
printf("\r\n");
}else{
for (i = 1; i <= paraN; i ++){
paraSolution[paraT] = i;
if (place(paraSolution, paraT))
backtracking(paraSolution, paraN, paraT + 1);
}//Of for i
}//Of if
}//Of backtracking
/**
* Title: n queens.<br>
*/
void nQueen(int paraN){
int i;
int* solution = (int*)malloc((paraN + 1) * sizeof(int));
for (i = 0; i <= paraN; i ++)
solution[i] = 0;
backtracking(solution, paraN, 1);
}//Of nQueen
/**
* The entrance.
*/
int main(){
nQueen(5);
return 1;
}//Of main
2. 运行结果
1 3 5 2 4
1 4 2 5 3
2 4 1 3 5
2 5 3 1 4
3 1 4 2 5
3 5 2 4 1
4 1 3 5 2
4 2 5 3 1
5 2 4 1 3
5 3 1 4 2
Press any key to continue
3. 代码分析
- 回溯算法是万能解题法.
- 应对组合优化问题.
- 回溯法的框架都是一致的.
- 本问题的解空间: n+1n + 1n+1 层 nnn 叉树.
- 类似于汉诺塔问题, 这里并没有显示地构建树.
- 深度优先遍历 + 剪枝技术.
- 空间复杂度 O(n)O(n)O(n). 时间复杂度未知.
4. DeepSeek 修订版
#include <stdio.h>
#include <stdlib.h> // 包含malloc/free的标准头文件
#include <stdbool.h>
#define MAX_QUEENS 20 // 最大支持皇后数
/**
* @brief 检查当前位置是否合法
* @param queen_pos 皇后位置数组(1-based索引)
* @param current_row 当前要检查的行号
* @return bool 是否合法位置
*/
bool is_valid_position(const int queen_pos[], int current_row) {
for (int prev_row = 1; prev_row < current_row; ++prev_row) {
const int col_diff = abs(queen_pos[prev_row] - queen_pos[current_row]);
const int row_diff = current_row - prev_row;
// 检查同一列或对角线冲突
if (col_diff == 0 || col_diff == row_diff) {
return false;
}
}
return true;
}
/**
* @brief 递归求解N皇后问题
* @param queen_pos 皇后位置数组(1-based索引)
* @param n_queens 皇后总数
* @param current_row 当前处理的行号
*/
void solve_n_queens_helper(int queen_pos[], int n_queens, int current_row) {
if (current_row > n_queens) {
// 打印解决方案
for (int i = 1; i <= n_queens; ++i) {
printf("%d ", queen_pos[i]);
}
putchar('\n');
return;
}
// 尝试当前行的每一列
for (int col = 1; col <= n_queens; ++col) {
queen_pos[current_row] = col;
if (is_valid_position(queen_pos, current_row)) {
solve_n_queens_helper(queen_pos, n_queens, current_row + 1);
}
}
}
/**
* @brief 求解N皇后问题入口函数
* @param n_queens 皇后数量
*/
void solve_n_queens(int n_queens) {
if (n_queens < 1 || n_queens > MAX_QUEENS) {
fprintf(stderr, "Error: Invalid number of queens (1-%d)\n", MAX_QUEENS);
return;
}
// 分配存储空间(1-based索引,0号元素未使用)
int *queen_pos = (int*)malloc((n_queens + 1) * sizeof(int));
if (!queen_pos) {
perror("Memory allocation failed");
return;
}
// 初始化数组
for (int i = 0; i <= n_queens; ++i) {
queen_pos[i] = 0;
}
solve_n_queens_helper(queen_pos, n_queens, 1);
free(queen_pos); // 释放内存
}
/**
* @brief 主函数
*/
int main() {
printf("Solutions for n-Queens problem:\n");
solve_n_queens(5);
return 0; // 正确返回状态码
}