构建AI智能体:五、Pandas常用函数介绍,CodeBuddy智能化处理Excel数据实例

『AI先锋杯·14天征文挑战第4期』 10w+人浏览 78人参与

一、Pandas基础

      Pandas是Python的一个数据分析包,用于数据操作和分析,拥有灵活和表达力强的数据结构,提供了大量的快速便捷的处理数据的函数和方法。

  • 常用数据结构说明:

  • Series:一维数组,与Numpy中的一维array类似,可以保存不同种数据类型,包括字符串、boolean值、数字等。

  • Time-Series:以时间为索引的Series。

  • DataFrame:二维的表格型数据结构,可以将DataFrame理解为Series的容器。

  • Panel :三维的数组,可以理解为DataFrame的容器。

二、核心数据结构

1.声明一个一维带标签的数组(类似字典)

import pandas as pds
s = pd.Series([3, 6, 9], index=['a', 'b', 'c'])

输出结果:

a    3
b    6
c    9
dtype: int64

2.声明一个二维表格(类似Excel)

data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['NY', 'Paris', 'London']
}
df = pd.DataFrame(data)

输出结果:

Name

Age

City

0

Alice

25

NY

1

Bob

30

Paris

2

Charlie

35

London

图片

三、基础操作

1.查看数据

df.head(2)      # 前2行
df.tail(1)      # 最后1行
df.shape        # 维度 (3, 3)
df.info()       # 数据类型和内存
df.describe()   # 数值列统计摘要
df.columns      # 显示所有列
df.values       # 显示所有值

图片

图片

图片

2.选择数据

df['Name']              # 单列 → Series
df[['Name', 'City']]    # 多列 → DataFrame
df.iloc[0]              # 第一行(按位置)
df.loc[0, 'Age']        # 第一行的Age值(按标签)

图片

3.过滤数据

df[df['Age'] > 25]               # Age大于25的行
df.query("City == 'Paris'")      # 使用query方法

图片

4.处理缺失值

df.dropna()      # 删除含NaN的行
df.fillna(0)     # 将NaN替换为0

图片

注意:此示例中导入了numpy包,声明了一个为NaN的数据列,进行效果演示

四、数据操作

1. 新增列

df['Salary'] = [70000, 80000, 90000]  # 添加新列

图片

2. 分组聚合

df.groupby('City')['Age'].mean()  # 按城市分组计算平均年龄

图片

3.排序

df.sort_values('Age', ascending=False)  # 按年龄降序

图片

4.数据转置

数据转置是一种常见的数据处理操作,指将数据表的行列互换(即行变列、列变行),需加深印象,画重点!

df.T   # 数据转置

图片

  • 转置的主要应用场景:

  • 矩阵运算:

  1.  在进行线性代数运算时,如矩阵乘法,转置操作是必不可少的‌
  2. 转置后的矩阵可以简化某些数学运算过程​​​​​​
  • 数据可视化:

  1.  在做数据报表展示时,转置数据可以更直观地展示在图表中‌
  2. 以不同视角呈现数据:例如学生成绩数据,转置前适合查看每个学生的成绩情况,转置后则便于观察每个学科的学习情况‌​​​​​​​

     此处只做初步了解,后续遇到详细实际场景再详细说明;

五、I/O操作

1.读写文件​​​​​​​

# 读取CSV/Excel/SQL
df = pd.read_csv('data.csv')
df = pd.read_excel('data.xlsx')
# 保存数据
df.to_csv('new_data.csv', index=False)

六、常用函数​​​​​​​

df.rename()	#重命名列名
df.drop()	#删除行/列
pd.concat()	#合并多个DataFrame
df.merge()	#数据库风格的合并

图片

  merge函数‌

        merge函数‌需要重点关注,今天的实例中也会用到,主要用于合并两个数据集(如DataFrame),支持多种连接方式(如内连接、左连接、右连接、外连接),类似数据库查询的Left jion,Right Join ,Inner Join

  • ‌基本用途‌:

  • merge函数通过公共列(键)将两个数据集横向合并,类似于SQL中的JOIN操作。其核心参数包括:

  • left/right:待合并的两个数据集

  • on:指定连接的列名,需在两个数据集中存在

  • how:定义连接方式(默认为inner,其他选项包括left、right、outer)

  • ‌连接类型‌:

  • ‌内连接(inner)‌:仅保留键列匹配的行(交集)。‌‌

  • ‌左连接(left)‌:保留左侧数据集所有行,右侧匹配缺失值填充NaN。‌‌

  • ‌右连接(right)‌:保留右侧数据集所有行,左侧匹配缺失值填充NaN。‌‌

  • ‌外连接(outer)‌:保留所有行,未匹配部分填充NaN。‌‌

  • ‌高级用法‌:

  • ‌多列匹配‌:通过on指定多列作为复合键。‌‌

  • ‌自定义列名‌:若列名不同,可使用left_on和right_on分别指定。‌‌

  • ‌处理重复列‌:合并后相同列名自动添加后缀(如.x、.y)

七、Excel操作实例

      初步了解了Pandas的常规用法,下面结合CodeBuddy看一个Excel数据集的操作实例,项目中有两个Excel文档,分别是“员工基本信息表.xlsx”、“员工绩效表.xlsx”

图片

打开CodeBuddy,发送指令:

"编写Python,打开 员工基本信息表.xlsx 和 员工绩效表.xlsx,读取前5行数据"

图片

生成了read_excel.py文件,仔细看看用到了哪些函数,确认输出结果是否符合预期;​​​​​​

import pandas as pd
# 读取员工基本信息表的前5行
def read_employee_info():
    try:
        df = pd.read_excel('员工基本信息表.xlsx', nrows=5)
        print("员工基本信息表的前5行数据:")
        print(df)
    except Exception as e:
        print(f"读取员工基本信息表时出错: {e}")
# 读取员工绩效表的前5行
def read_employee_performance():
    try:
        df = pd.read_excel('员工绩效表.xlsx', nrows=5)
        print("员工绩效表的前5行数据:")
        print(df)
    except Exception as e:
        print(f"读取员工绩效表时出错: {e}")
if __name__ == "__main__":
    read_employee_info()
    read_employee_performance()

如果都没有问题,下达第二条指令:

“编写Python,在员工基本信息表.xlsx 的基础上,增加该员工 2024年第4季度的绩效,存到新的 .xlsx”

CodeBuddy的思考过程:

图片

执行过程:

图片

执行完毕后,生成了新的add_performance.py文件和员工信息及绩效表.xlsx文件

员工信息表的前后对比:

图片

新生成的add_performance.py文件:

​​​​​​​

import pandas as pd
import numpy as np
# 读取员工基本信息表
def read_employee_info():
    try:
        df = pd.read_excel('员工基本信息表.xlsx')
        print("员工基本信息表读取成功!")
        return df
    except Exception as e:
        print(f"读取员工基本信息表时出错: {e}")
        return None
# 添加2024年第4季度绩效数据
def add_performance_data(df):
    if df is not None:
        # 假设绩效数据为随机生成(范围:1.0-5.0)
        np.random.seed(42)  # 确保结果可复现
        df['2024年第4季度绩效'] = np.random.uniform(1.0, 5.0, size=len(df)).round(2)
        print("绩效数据添加完成!")
        return df
    else:
        print("无法添加绩效数据:员工信息为空!")
        return None
# 保存到新文件
def save_to_new_file(df):
    if df is not None:
        new_file = '员工信息及绩效表.xlsx'
        df.to_excel(new_file, index=False)
        print(f"数据已保存到 {new_file}")
    else:
        print("无法保存:数据为空!")
if __name__ == "__main__":
    employee_df = read_employee_info()
    employee_with_performance = add_performance_data(employee_df)
    save_to_new_file(employee_with_performance)

文内涉及到numpy的一些知识点,可以先行了解,自我扩展,举一反三,查漏补缺,后续将会结合案例详细讲解!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值