第十一章:open3D的使用

本文介绍了如何使用open3D库进行点云数据的处理,包括多角度点云拼接、近邻搜索、半径索引、混合检索、法向量估计和结构化数据Mesh生成。通过实例展示了点云处理的不同步骤,为三维建模和3D打印提供了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基础:安装pip3 install open3d        查看安装包:pip list

一.多角度点云拼接在一起生成整个点云

bunny10k.ply

import open3d as o3d
import numpy as np

print("Open3D read Point Cloud")
pcd=o3d.io.read_point_cloud(r"/Users/air/Desktop/bunny10k.ply")#替换为自己的兔兔的路径#
print(pcd)

o3d.visualization.draw_geometries([pcd],width=800,height=600)

运行结果为:

运行显示:

 PS:按ctrl+-号可以减少点云的体素尺寸,ctrl++放大

二.Open3d的近邻搜索 

贴着表面去找 可以做到降噪

import open3d as o3d
import numpy as np

print("Open3D read Point Cloud")
pcd = o3d.io.read_point_cloud(r"/Users/air/Desktop/bunny10k.ply")
pcd.paint_uniform_color([0.5, 0.5, 0.5])#颜色可以设置为灰色#

pcd_tree = o3d.geometry.KDTreeFlann(pcd)#open3d里最重要的几何一套 贴着近邻平面去找#
pcd.colors[100] = [1, 0, 0]#把第100个点色彩设置为红#

[k, idx, _] = pcd_tree.search_knn_vector_3d(pcd.points[100],100)#以点源数据的第100个点找数据#
np.asarray(pcd.colors)[idx[1:], :] = [0, 1, 0]#返回找到的点的坐标,把周围10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值