8、MAST-NER: 基于触发池的低资源命名实体识别方法

MAST-NER: 基于触发池的低资源命名实体识别方法

1. 引言

命名实体识别(Named Entity Recognition,NER)旨在从给定文本中提取实体,并将其按照预定义的类别(如人物、地点、组织等)进行分类。它通常是信息提取的第一步,直接影响下游应用的准确性。目前,以 BiLSTM - CRF 为代表的基于深度学习的 NER 模型在通用领域表现出了良好的性能,但这些方法需要大量的标注数据,而在许多情况下,标注数据是稀缺的。

例如,在工业领域,许多制造商积累了大量的维护报告,这些报告描述了设备故障排除过程,包含大量的领域实体,但标注它们既耗时又费力。

最近,有人提出了一种基于实体触发词的命名实体识别方法 TriggerNER。实体触发词是一组有助于我们识别实体的提示词或短语。例如,在句子 “We had a fantastic lunch at Rumble Fish yesterday.” 中,根据 “had … lunch at” 可以推断 “Rumble Fish” 是一个餐厅名称,“had … lunch at” 就是一个实体触发词。实验表明,TriggerNER 具有较高的成本效益,仅使用 20% 带有触发词标注的句子就能达到使用 70% 传统标注句子的性能。

TriggerNER 的思想非常适合特定领域的文本,因为许多特定领域的文本具有相似的句子模式。例如,设备维护报告的结构通常包括症状、原因和解决方案;典型的电子病历(EMR)包含症状、疾病、时间和手术项目等。这些数据具有相似的术语,因此实体触发词可以很好地发挥作用。然而,将 TriggerNER 应用于这些特定领域的文本时,仍然存在一些问题:
1. 同一类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值