mm9012
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
81、一致性正则化助力缓解鲁棒过拟合
本文提出了一种基于一致性正则化的对抗训练方法(PGD-AT+MT),通过引入指数移动平均的教师模型,结合MSE一致性损失,有效缓解了鲁棒过拟合问题。该方法在CIFAR10和CIFAR100数据集上进行了验证,结果显示其在保持高自然准确率的同时显著提升了模型对多种对抗攻击的鲁棒性,并优于现有的多种相关方法。原创 2025-07-16 01:01:35 · 13 阅读 · 0 评论 -
80、一致性正则化助力缓解对抗训练中的鲁棒过拟合问题
本文研究了对抗训练(AT)中的鲁棒过拟合问题,并提出了一种基于一致性正则化的新方法来缓解该问题。通过引入半监督学习中的“Mean Teacher”(MT)策略,构建一个基于学生模型指数移动平均权重的教师模型,使学生模型对对抗样本的预测分布与教师模型对干净样本的预测分布一致。实验表明,该方法能够有效减少鲁棒泛化差距,提高深度神经网络(DNN)模型在面对对抗攻击时的鲁棒性和泛化能力。原创 2025-07-15 12:30:05 · 16 阅读 · 0 评论 -
79、基于PUF的CNN模型IP保护方案
本文提出了一种基于仲裁器物理不可克隆函数(APUF)的卷积神经网络(CNN)IP保护方案,以防止用户非法获取和复制嵌入在FPGA中的深度学习模型。该方法利用PUF生成FPGA唯一指纹,并通过混淆正确模型与假模型的参数实现模型保护。实验表明,该方案能够在不影响预测准确性的前提下有效保护模型IP,同时具备无需存储密钥、安全性高和易于扩展等优势。原创 2025-07-14 16:12:37 · 13 阅读 · 0 评论 -
78、基于能量学习与PUF的机器学习安全防护
本博客探讨了基于能量学习和物理不可克隆函数(PUF)的机器学习安全防护方法。文章首先介绍了能量函数在数据一致性检查中的应用,以及其在后门攻击中的潜力;随后分析了CNN模型知识产权保护的挑战,比较了现有保护方法的优缺点;最后提出了一种基于PUF的CNN模型IP保护方案,并从性能、安全性及可扩展性等方面进行了深入评估。原创 2025-07-13 09:14:18 · 10 阅读 · 0 评论 -
77、基于能量学习预防后门攻击
本文探讨了基于能量学习的方法来预防后门攻击,涵盖了能量函数的构建、后门攻击的类型与防御策略,并提出了结合能量学习框架的具体算法。通过多个实际案例(如iPhone数据隐私问题和网络邮件服务器攻击)验证了该方法的有效性。同时,文章分析了未来的研究方向,包括能量函数的优化、多技术融合防御以及后门攻击新趋势的应对策略。最终目标是通过能量学习框架提升系统的安全性与可靠性。原创 2025-07-12 13:09:55 · 10 阅读 · 0 评论 -
76、硬件与软件协同设计及基于能量的学习在后门攻击防范中的应用
本博客探讨了硬件与软件协同设计以及基于能量的学习在后门攻击防范中的应用。首先,介绍了通过数据池和软开关架构优化硬件与软件协同设计的方法,显著提升了性能并减少了数据规模。其次,详细分析了能量基学习的原理及其在防范后门攻击中的潜力,提出了基于能量基模型的后门检测算法,并通过实验验证了其有效性。研究结果表明,结合硬件优化和能量基学习能够为网络安全提供更可靠的保障。原创 2025-07-11 10:09:53 · 10 阅读 · 0 评论 -
75、多头注意力机制头部分类与ViT变体处理单元软硬件协同设计
本博文探讨了多头注意力机制中头部分类的研究与ViT变体处理单元的软硬件协同设计方案。通过分析超参数对BLEU值的影响,提出了GS、AS和ADS三种分类方案,有效解决了多头注意力机制中的重复计算问题,并显著提高了模型性能。此外,针对ViT变体在FPGA上的部署需求,设计了高效的软硬件协同架构,结合CNN和Transformer模块,在保证精度的同时大幅提升了计算效率和资源利用率。实验结果表明,该设计在FPGA上实现了相较于CPU、GPU等平台的显著性能提升。原创 2025-07-10 13:56:12 · 9 阅读 · 0 评论 -
74、多头注意力机制中头的分类研究
本文研究了 Transformer 模型中多头注意力机制的优化方法,提出对多头注意力中的头进行分类的新思路。通过设计不同的分类方案(如高斯、三角分割和反对角分割),在 Multi30k 数据集上的实验表明该方法有效提升了模型性能,并减少了计算重复性。文章总结了不同分类方法的优缺点,并对未来的研究方向进行了展望。原创 2025-07-09 10:56:21 · 10 阅读 · 0 评论 -
73、SSA:基于内容的稀疏注意力机制
本文介绍了稀疏谱注意力(Sparse Spectral Attention, SSA)这一新型注意力机制,结合了局部注意力和基于内容的稀疏注意力的优点。SSA 通过局部层使用扩张滑动窗口编码局部信息,以及全局层通过结构化修剪构建稀疏注意力矩阵来编码全局上下文信息,从而在降低计算复杂度的同时兼顾远程依赖关系建模。实验表明,SSA 在自然语言处理(如机器翻译、语言建模)和计算机视觉(如图像识别)等多个任务中均表现出色,具有较低的存储消耗和较高的推理效率。原创 2025-07-08 10:27:01 · 9 阅读 · 0 评论 -
71、软硬件融合多头注意力机制与窗口注意力优化
本文探讨了针对 Transformer 模型中多头注意力机制与窗口注意力的软硬件协同优化方法。通过并行计算单元设计、数据切片与复制策略,显著提升了多头注意力的计算效率,并在 FPGA 平台上验证了优化效果。同时,针对窗口注意力机制,采用泰勒展开替代 exp 函数和矩阵乘法优化,进一步降低了资源消耗并提高了吞吐量。研究成果为 Transformer 模型在资源受限设备上的高效部署提供了可行方案。原创 2025-07-06 09:33:14 · 9 阅读 · 0 评论 -
70、能源消耗预测与多头注意力机制的软硬件融合优化
本文探讨了能源消耗预测方法和多头注意力机制(MHA)的软硬件融合优化方案。在能源消耗预测方面,提出了一种结合离散和集中化元素的方法,并应用于IDEAS智能家居能源项目,显示出显著的节能潜力。针对Transformer模型的核心模块MHA,提出了F-MHA设计,通过软件结构优化和硬件加速相结合,在保证准确性的前提下大幅提升了推理速度。实验结果表明,该优化方法在图像分类任务中的推理速度达到基线的15.19倍,准确性损失低于1%。未来的研究方向包括提高尖峰事件预测精度以及探索更高效的量化方法和硬件架构。原创 2025-07-05 15:20:12 · 8 阅读 · 0 评论 -
69、基于频段数据分析的能耗预测方法
本文提出了一种基于频段数据分析的能耗预测方法,通过超网格和频率网格等聚类算法将能源分解到电器,实现对家庭电器能耗的预测。该方法相比传统的马尔可夫模型更节省计算资源,并且能够适应电器行为的不可预测性。文章详细介绍了算法流程、案例研究及测试结果,同时分析了其优势与不足,并提出了未来改进方向。原创 2025-07-04 13:35:28 · 7 阅读 · 0 评论 -
68、学术场馆推荐系统与能源消耗预测方法解析
本文详细解析了学术场馆推荐系统的多领域与关联领域对比实验,以及基于波段数据分析的能源消耗预测方法。在学术场馆推荐方面,实验结果显示多领域方法在准确性上优于其他方法;在能源管理领域,Hyper - Grid 随机聚类方法为电器层面的能源预测提供了高效且实用的解决方案。文章还探讨了两种方法的应用前景、联系与未来发展方向。原创 2025-07-03 15:31:44 · 7 阅读 · 0 评论 -
67、学术领域的两大前沿技术:抵御攻击与推荐系统优化
本文探讨了学术和技术领域的两大前沿技术:抵御针对性位翻转攻击的DAGB方法以及用于研究人员学术场所精准推荐的个性化推荐系统。DAGB通过对输入样本进行随机变换以模糊梯度,有效降低攻击成功率且不影响模型性能,适用于自动驾驶、金融和医疗等高安全需求领域。学术场所推荐系统基于多领域与关联领域的比较分析,结合用户偏好数据提高推荐准确性,为研究者提供更匹配的发表机会。文章还讨论了两种技术的优势、挑战及未来发展方向,包括算法优化、数据质量提升及实时更新能力增强等方面。原创 2025-07-02 14:02:02 · 8 阅读 · 0 评论 -
66、利用数据增强减轻目标位翻转攻击
本文探讨了深度学习模型面临的目标位翻转攻击(BFA)问题,并提出了一种基于数据增强的防御方法DAGB。通过在模型推理前对输入样本进行预处理,DAGB能够有效降低TBT攻击和ProFlip攻击的成功率,同时对模型在干净数据上的准确性影响较小。实验结果显示,该方法在ResNet-20和VGG-16模型上均表现出良好的防御效果。文章还展望了未来研究方向,包括优化算法参数、拓展应用场景以及结合其他防御策略等,旨在为深度学习模型的安全性提供更可靠的保障。原创 2025-07-01 09:12:40 · 9 阅读 · 0 评论 -
65、基于协作扩散生成模型的推荐系统与深度神经网络抗攻击方法
本文探讨了基于协作扩散生成模型的推荐系统以及深度神经网络对抗目标位翻转攻击的方法。针对推荐系统领域,提出了CODIGEM模型,利用扩散概率模型处理非线性用户-项目交互,并通过实验验证其在多个数据集上的性能和效率优势。对于深度神经网络的安全问题,提出了一种基于梯度混淆的数据增强方法,有效缓解目标位翻转攻击的影响,同时保持良性样本的准确率。研究为推荐系统的建模能力和深度学习安全性提供了新的思路和技术支持。原创 2025-06-30 10:04:35 · 7 阅读 · 0 评论 -
64、苹果病虫害关系抽取与协同扩散生成模型研究
本文介绍了两项研究:苹果病虫害关系抽取模型 BE-ARE 和协同扩散生成模型 CODIGEM。BE-ARE 模型结合 BiGRU 和注意力机制,在处理长文本序列和细粒度分类方面表现出色,尤其在苹果病虫害数据集 AppleRE 上取得了优异的 F1-score 性能。CODIGEM 是首个基于去噪扩散概率模型(DDPM)的协同过滤模型,通过建模用户-物品交互数据的复杂非线性模式,提升了推荐系统的性能。文章还深入分析了两个模型的核心组件及其在实际场景中的应用潜力。原创 2025-06-29 11:09:00 · 9 阅读 · 0 评论 -
63、出租车通勤交通分析区域识别与苹果病虫害关系抽取研究
本研究探讨了两个不同领域的实际问题:一是基于出租车GPS数据、城市道路网络和POI信息的出租车通勤交通分析区域(TAZ)识别方法,并以重庆为例进行实验验证;二是针对苹果病虫害领域存在的细粒度关系类别与分布不均衡问题,构建AppleRE数据集并提出BE-ARE关系抽取模型。研究结果在城市交通优化和农业知识挖掘方面具有重要意义,为相关领域的后续应用提供了基础支持。原创 2025-06-28 11:02:47 · 8 阅读 · 0 评论 -
62、利用海量GPS数据识别出租车通勤交通分析区域
本研究利用海量出租车GPS数据,提出了一种识别区域级通勤模式的方法,通过划分交通分析区域(TAZs)、获取流量转移矩阵以及使用K-均值聚类算法,成功识别出具有通勤关系的52对TAZs。基于重庆的实证分析揭示了早晚高峰的通勤热点、距离和时间分布特征,为城市规划、交通管理和公共交通服务优化提供了有价值的参考。同时,研究也讨论了数据与模型的局限性,并展望了未来的研究方向。原创 2025-06-27 15:25:14 · 12 阅读 · 0 评论 -
61、基于低级别特征注意力引导的自然图像抠图
本文提出了一种基于低级别特征注意力引导的自然图像抠图方法。通过引入低级别特征通道引导(LFCG)模块和动态上采样块(DUB),在不显著增加网络容量的前提下,提高了抠图精度和细节恢复能力。实验结果表明,该方法在Adobe Deep Image Matting Dataset等数据集上,在SAD、MSE、Grad和Conn等多个评估指标上均优于现有方法,同时具有更高的资源效率和实际应用价值。原创 2025-06-26 10:25:36 · 9 阅读 · 0 评论 -
60、HLB - ConvMLP与自然图像抠图算法的创新研究
本博文介绍了两项创新研究成果:HLB - ConvMLP和LFCGN。HLB - ConvMLP是一种针对柑橘黄龙病快速识别的轻量级深度学习模型,结合了卷积块和MLP块的优势,在保证高准确率的同时大幅减少参数大小并提升推理速度,适用于边缘设备部署。LFCGN则提出了一种自然图像抠图的新方法,通过低级别特征通道注意力模块和动态上采样技术,有效解决了微小细节结构(如头发、毛发)抠图的难题。两项研究分别在农业病害检测和计算机视觉领域展现了广阔的应用前景。原创 2025-06-25 12:57:07 · 13 阅读 · 0 评论 -
58、中文拼写检查与短文本聚类算法研究
本文探讨了自然语言处理领域中的两项关键技术:PromptCSC 中文拼写检查模型和 W-Hash 中文短文本聚类算法。PromptCSC 通过基于提示的检测器和软掩码校正器实现了高准确率和F1分数,适用于工业场景中的拼写纠错任务;而 W-Hash 则通过单词哈希和低计算复杂度的设计,有效提升了大规模短文本数据的聚类效率与合理性。两种技术均在实验中展示了优越的性能,并为未来的研究和应用提供了新的思路。原创 2025-06-23 10:32:18 · 9 阅读 · 0 评论 -
57、基于提示机制的中文拼写检查与异地推荐模型探索
本文探讨了基于提示机制的中文拼写检查模型PromptCSC和一种新型异地推荐模型。PromptCSC利用BERT实现端到端的错误检测与校正,无需依赖外部资源,具有较强的语义理解能力和迁移能力。在异地推荐方面,提出了一种结合层次类别特征与对抗循环一致双自动编码器(ACCAC)的模型,有效解决了重叠用户有限的问题,并在真实数据集上验证了其优越性能。未来将探索更多辅助信息以进一步优化模型效果。原创 2025-06-22 13:05:07 · 10 阅读 · 0 评论 -
56、循环一致且类别感知的异地推荐方法解析
本文提出了一种循环一致且类别感知的异地推荐方法,通过类别感知的兴趣点(POI)嵌入、去噪自编码器预训练、潜在空间映射以及具有循环一致性的生成对抗网络(GAN)等技术,有效解决了在家乡城市和目标城市之间重叠用户较少时的推荐难题。模型利用层次类别信息增强POI嵌入的语义表达,通过自编码器进行预训练以提高嵌入的可解释性,再结合潜在空间映射和GAN进一步挖掘用户跨城市的兴趣漂移,从而在异地推荐任务中取得显著优于现有方法的性能。实验结果验证了该方法在多个真实世界数据集上的有效性,并通过消融研究展示了各组件对整体性能的原创 2025-06-21 11:59:01 · 8 阅读 · 0 评论 -
55、提升对抗攻击可迁移性与跨城兴趣点推荐的研究
本文探讨了对抗攻击和跨城兴趣点推荐两个领域的研究成果。首先,GM-Attack通过信息删除显著提升了对抗攻击的可迁移性,在多种攻击场景下表现出更高的成功率。其次,提出的ACCAC模型通过结合POI类别层次信息和引入CycleGAN,有效解决了现有跨城推荐方法在重叠用户数据稀缺时的不足,实现了更精准的用户兴趣漂移建模。实验验证了这两种方法在各自领域中的优越性,为未来研究提供了新的思路。原创 2025-06-20 12:50:56 · 9 阅读 · 0 评论 -
54、GM-Attack:提升对抗攻击的可迁移性
本文提出了一种新的对抗攻击方法——GM-Attack,通过基于信息删除的网格掩码策略提升对抗样本的可迁移性。该方法在输入图像中随机删除空间均匀分布的正方形区域,降低生成样本与白盒模型判别区域的相关性,从而增强对黑盒模型的攻击效果。实验表明,GM-Attack 在多种模型上均表现出优越的可迁移性和攻击成功率,并能与其他输入变换方法集成以进一步提升性能。原创 2025-06-19 11:23:03 · 8 阅读 · 0 评论 -
53、织物缺陷检测技术研究
本文提出了一种结合增强型深度超分辨率网络(EDSR)和改进的Faster RCNN的织物缺陷检测方法,以解决多类型缺陷、背景重合度高、面积差异大及极端长宽比等问题。通过EDSR重建高分辨率图像分离缺陷与背景,并在Faster RCNN基础上引入FPN、DCNv2模块,优化锚框比例和ROI池化策略,显著提升了检测精度。实验表明,该方法在复杂缺陷检测中表现优异,但仍存在对细微缺陷检测效果不佳和检测速度慢的问题,未来将从特征提取优化和网络结构简化等方面进行改进,并向智能化、实时化、多场景应用方向发展。原创 2025-06-18 09:37:22 · 13 阅读 · 0 评论 -
52、冗余架构可靠性分析与织物缺陷检测技术研究
本文主要探讨了冗余架构的可靠性分析与织物缺陷检测技术的研究进展。在冗余架构方面,详细介绍了脉冲发生器模型、三模冗余(TMR)模型和动态冷备用冗余架构模型的工作原理及可靠性评估方法,并通过实验对比了不同架构在系统可靠性、故障率、降级可用性和全功能可用性等方面的表现。在织物缺陷检测方面,提出了一种结合增强深度残差网络(EDSR)和改进Faster RCNN的检测方法,有效解决了传统方法在缺陷识别中的局限性。文章总结了两种技术的研究成果,并展望了未来的发展方向,包括冗余架构的定性与定量分析结合以及织物缺陷检测技术原创 2025-06-17 14:55:37 · 10 阅读 · 0 评论 -
51、学术论文推荐与冗余架构可靠性分析
本文探讨了两个重要领域的研究:基于超图的学术论文推荐方法和基于SBIP框架的冗余架构可靠性分析。在学术论文推荐部分,提出了APRHG构建和L-HGCF算法,利用超图建模能力提升推荐效果;在冗余架构可靠性分析中,通过形式化建模与自动化评估方法,对TMR和冷备用架构进行了深入研究。两项研究均展示了高效、可靠的性能,并为未来扩展应用提供了方向。原创 2025-06-16 15:32:22 · 9 阅读 · 0 评论 -
50、基于超图的学术论文推荐方法
本文提出了一种基于超图的学术论文推荐方法,旨在解决传统协同过滤和基于图卷积神经网络的深度学习算法在多特征融合和高阶相似性嵌入生成方面的局限性。通过构建学术论文关系超图(APRHG)和设计轻量级超图协同过滤算法(L-HGCF),该方法能够有效融合用户历史偏好、论文共被引关系和共关键词关系等多类型特征。实验结果表明,该方法在推荐质量方面优于多种基线模型,并通过消融分析验证了模型设计的有效性。原创 2025-06-15 15:00:27 · 7 阅读 · 0 评论 -
49、深度学习两大领域创新技术:轻量级目标检测与超图学术论文推荐
本文介绍了两种深度学习领域的创新技术:一种是改进的轻量级目标检测算法MobileNetv3-YOLOv3,通过引入MobileNetv3作为骨干网络和基于CIoU的损失函数改进,在保证精度的同时显著提升了检测速度;另一种是基于超图的学术论文推荐方法,通过构建APRHG超图并结合L-HGCF算法,有效融合论文之间的共引和共关键词关系,提高了推荐质量。实验验证了这两种方法在各自领域中的优势和应用前景,并探讨了未来的研究方向。原创 2025-06-14 11:36:15 · 11 阅读 · 0 评论 -
48、生物文献命名实体识别与软件模型检查算法的创新探索
本文探讨了生物文献中命名实体识别(NER)的挑战及解决方案,提出了一种基于无监督域适应方法的biolitNER算法,并将其与现有技术进行比较,展示了其在预测质量和运行效率方面的优势。此外,文章还介绍了K-RVFL算法在软件模型检查中的应用,该算法通过特征杂交和融合实现了高准确性和快速训练性能。最后,文章对两种算法的发展趋势、多领域应用潜力以及优化方向进行了展望,为相关领域的开发者提供了实践建议。原创 2025-06-13 09:11:03 · 9 阅读 · 0 评论 -
47、K-RVFL:软件模型检查的高效算法
本文介绍了一种用于软件模型检查中算法选择问题的新型随机向量功能链接(RVFL)算法——K-RVFL。该算法通过多种激活函数和多层次非线性映射,提高了特征的多样性和模型的预测准确性,同时保持了高效的训练速度。实验结果表明,K-RVFL在多个指标上均优于传统方法如ELM、RVFL、SCN、BP和SVM,为复杂工业软件系统的验证提供了高效且可靠的解决方案。原创 2025-06-12 12:05:48 · 8 阅读 · 0 评论 -
46、建模同理心认知模式与软件模型检查算法选择新方法
本文探讨了建模同理心认知模式与软件模型检查算法选择的新方法。基于属性关系图(ARD)的建模技术,详细解析了同理心认知过程的构成及其应用,并提出了新型神经网络算法K-RVFL用于软件模型检查工具的选择。K-RVFL通过特征杂交和融合机制提升了特征提取能力和学习速度,相比传统方法如SVM表现出了显著优势。这些方法分别在教育、医疗等领域的同理心应用以及复杂软件系统的验证中展现出重要的价值和潜力。原创 2025-06-11 11:06:36 · 6 阅读 · 0 评论 -
45、视频语义标注与共情建模研究
该博客探讨了视频语义标注与共情建模的研究,重点包括视频处理中的目标检测与跟踪方法、动物行为知识的构建与分析,以及共情事件的认知模式和建模方法。通过结合计算机视觉技术与情感计算,研究为理解动物行为及模拟人类共情提供了新的思路,并展望了未来多模态数据融合与跨学科研究的发展方向。原创 2025-06-10 13:48:35 · 8 阅读 · 0 评论 -
44、多语言信息事件检测与视频语义标注在动物行为研究中的应用
本文探讨了多语言信息事件检测与视频语义标注在动物行为研究中的应用。首先,提出了一种基于多语言信息增强和句法依赖图的事件检测方法(MS-GCN),在ACE2005基准数据集上表现出优异性能。其次,针对动物行为研究需求,设计了一套完整的视频语义标注方法,包括使用Mask R-CNN进行视频对象检测与跟踪、构建本体模型并结合SWRL语义规则实现行为分析与决策支持。通过实际评估,该方法在特定条件下实现了高效的动物跟踪,并为牧场管理和动物健康提供了科学依据。未来改进方向包括优化检测与跟踪算法、完善语义规则体系,以进一原创 2025-06-09 14:30:40 · 8 阅读 · 0 评论 -
43、基于多语言信息的事件检测方法研究
本文研究提出了一种基于多语言信息增强的句法依存图卷积网络(MS-GCN)模型,用于事件检测任务。通过结合机器翻译、词对齐工具和依存句法分析,该方法有效解决了现有技术中语义信息不足和一词多义问题,在ACE2005基准数据集上的实验表明其性能优于现有最新方法。此外,还探讨了该方法在新闻事件监测、舆情分析和信息检索等领域的实际应用潜力,并提出了未来可能的拓展方向。原创 2025-06-08 15:51:49 · 5 阅读 · 0 评论 -
42、高校服务中的聊天机器人与事件检测技术应用
本文探讨了聊天机器人和事件检测技术在高校服务与信息处理领域的应用及其发展趋势。聊天机器人通过提供教育信息、充当智能导师以及优化服务交付,显著提升了高校服务质量和教学创新水平。同时,基于多语言信息增强和句法依存图神经网络的事件检测技术,有效解决了单语言信息不足和句法结构分析不足的问题。文章还分析了两种技术的应用场景、优势及挑战,并展望了其未来发展方向,包括智能化提升、多模态融合以及跨领域应用等,为高校管理和信息处理领域提供了重要的技术参考和实践指导。原创 2025-06-07 11:38:46 · 6 阅读 · 0 评论 -
41、高效推荐系统与敏捷聊天机器人的应用探索
本文探讨了高效推荐系统 MPERec 的性能、关键组件和训练效率,展示了其在多个数据集上的卓越表现,并分析了基于 Transformer 的模型与联邦推荐方法的优劣。同时,文章介绍了如何运用敏捷原则开发聊天机器人,以提升研究生教育领域的信息服务和服务交付效率。结合个性化服务、实时响应和丰富的知识储备,敏捷聊天机器人成为一种有效的解决方案。两者在各自领域展现了重要的应用价值和发展潜力。原创 2025-06-06 12:53:52 · 6 阅读 · 0 评论 -
40、基于自适应模型剪枝的傅里叶增强MLP实现高效联邦推荐
本文提出了一种高效的联邦推荐框架MPERec,结合傅里叶增强MLP推荐模型和自适应模型剪枝技术,在保护用户隐私的前提下实现高性能推荐。该方法在多个真实数据集上的实验表明,其在推荐准确性、模型大小和收敛速度方面均优于现有方法,适用于资源受限的联邦学习环境。原创 2025-06-05 10:05:41 · 8 阅读 · 0 评论