由于组里新同学进来,需要带着他入门RL,选择从silver的课程开始。
对于我自己,增加一个仔细阅读《reinforcement learning:an introduction》的要求。
因为之前读的不太认真,这一次希望可以认真一点,将对应的知识点也做一个简单总结。
注意:本章考虑model-free的prediction和control,仍然有两种方法,policy iteration和value iteration(evaluation阶段使用model-free方法,improvement阶段采用greedy方法)。这一节主要讲基于TD-Learning的value iteration方法。
在model-free的情况下,直接估算Q(S,A)更常见,因为即便估算出来了V(S),没有model还是不知道如何选择action(如何生成policy)。
MC思想:sample one timestep,然后用 [即时reward+后续状态的bootstrap] 来估算expected return。
MC method: V(St+1) = V(St) +α[Gt-V(St)] ==》use one sample Gt estimate Expectation
TD(0) method:V (St+1) = V (St) + α[Rt+1 + γV(St+1) - V(St)] ==》useone sample Rt+1 + γV(St+1) estimate Expectation,且V(St+1)也是estimation。
TD-target = Rt+1 + γV(St+1) ;TD-error = Rt+1 + γV(St+1) - V(St);MC error Gt - V(St)可以转换为TD-error的和: