Jacobian矩阵和Hessian矩阵

本文介绍了Jacobian矩阵和Hessian矩阵的概念及其在牛顿法中的应用,并探讨了通过Hessian矩阵判断局部极值的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


关于Jacobian矩阵和Hessian矩阵的介绍,挺简单明了的:

http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9%98%B5/


需要注意一点,

楼主你好,我和楼上一样不太懂你写的牛顿法求最优化那部分的思路。按我的理解,原方程泰勒二阶展开 f(x+Δx)=f(x)+f′(x)*Δx+1/2*f′′(x)Δx^2,然后看成Δx的函数,即我们要在给定x下,求一个能让 f(x+Δx)最小的Δx,那么 f(x+Δx)对 Δx求导后得到f′(x)+f′′(x)Δx,即得到Δx=-f′(x)/f′′(x).
楼主的思路我有两点不懂,第一是 f(x+Δx)=f(x)约掉后的余项式是什么意思呢,第二这个余项式对Δx求导又可以怎么理解呢?



Hessian Matrix是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部特征。是有19世纪德国数学家Ludwig Otto Hesse提出的,Hessian Matrix 常用语牛顿法解决优化问题。

  • 如果H(M)是 正定矩阵,则临界点M处是一个局部的极小值。
  • 如果H(M)是 负定矩阵,则临界点M处是一个局部的极大值。
  • 如果H(M)是 不定矩阵,则临界点M处不是极值。


Hessian 矩阵的特征值有什么含义?

https://www.zhihu.com/question/24623031/answer/28511640

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值