Python画图(多图展示在一个平面)

天行健,君子以自强不息;地势坤,君子以厚德载物。


每个人都有惰性,但不断学习是好好生活的根本,共勉!


文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。


关于python读取Excel表格数据并并画图保存简单实现可参考:
Python读取Excel表格数据并画图保存(pandas读取、matplotlib画图)

如何将多个图画在同一个平面上展示,如下
在这里插入图片描述
文章所需excel表格文件和完整代码文件已打包上传到CSDN资源库,点击链接直接获取
Python matplotlib画图 pandas表格数据读取 将多个图画在同一个平面内

一、准备表格数据

准备一个Excel文件,并填充数据
创建文件test01.xlsx
将sheet页名称该位car
填充三个字段speed_km_h、temp_c、time_s
填充数据,如下图
在这里插入图片描述

二、读取表格数据

读取表格中的数据,并将读取的模型数据打印输出到控制台
注:需提前下载对应的库信息,可参考文首文章链接

1. 引入所需库

引入pandas库用于读取表格文件
引入matplotlib库用于画图

#引入pandas用于读取
import pandas as pd
#引入matplotlib用于画图
import matplotlib.pyplot as plt

2. 读取文件数据

通过pandas库的函数读取表格文件数据

#使用pandas读取excel表,可指定sheet页的名字
df = pd.read_excel("./test01.xlsx",sheet_name="car")

3. 打印模型数据

打印模型数据

#打印读取的模型
print("df: ",df)

print("="*100
### 如何在Python中使用Matplotlib进行三维绘以区分不同平面 为了实现三维空间中的多个平面绘制并加以区分,可以利用`matplotlib`库的`plot_surface`函数以及设置不同的颜色映射和透明度。下面展示一个具体实例,其中包含了创建两个不重叠的曲面,并通过调整视角和其他属性使它们清晰可见。 #### 导入必要的模块 ```python import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Import necessary toolkit for 3D plotting ``` #### 定义数据集 定义用于表示两个独立表面的数据集合。这里选择了正弦波形作为其中一个例子,而另一个则是余弦波形,两者沿z轴方向有所偏移以便于观察[^1]。 ```python # Prepare data sets for two separate surfaces u = v = np.linspace(-np.pi, np.pi, 80) x_sin, y_sin = np.meshgrid(u, v) z_sin = np.sin(np.sqrt(x_sin ** 2 + y_sin ** 2)) x_cos, y_cos = np.meshgrid(u, v) z_cos = np.cos(np.sqrt(x_cos ** 2 + y_cos ** 2)) ``` #### 绘制形 创建一个新的表窗口,并向其添加一个具有‘3d’投影特性的子区。接着分别调用两次`ax.plot_surface()`方法来渲染这两个表面,每次都可以指定独特的参数如颜色表(`cmap`)、alpha值(控制透明程度)等特性。 ```python fig = plt.figure(figsize=(14, 10)) ax = fig.add_subplot(111, projection='3d') # Plot the first surface with a specific colormap and transparency level surf1 = ax.plot_surface(x_sin, y_sin, z_sin, cmap=plt.cm.coolwarm, alpha=0.7) # Plot the second surface using different parameters surf2 = ax.plot_surface(x_cos, y_cos, z_cos, cmap=plt.cm.viridis, alpha=0.6) # Customize labels and title ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.title('Two Distinct Surfaces in One Figure', pad=20) # Add color bar which maps values to colors. fig.colorbar(surf1, shrink=0.5, aspect=5) fig.colorbar(surf2, shrink=0.5, aspect=5) plt.show() ``` 此段代码展示了如何在同一张上呈现两个互不影响且易于辨认的不同曲面。通过改变各自的色彩方案与透明度选项,使得即使当视点变化时也能保持良好的视觉分离效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值