多校训练赛2 ZCC loves cards

本文介绍了一个关于卡片组合的游戏算法问题,玩家需要从N张带有数值的卡片中选择K张卡片围成一圈,并通过选取其中连续的几张卡片进行异或运算以获得特定数值范围内的所有可能值,目标是找到能覆盖的最大范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ZCC loves cards

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 260    Accepted Submission(s): 7


Problem Description
ZCC loves playing cards. He has n magical cards and each has a number on it. He wants to choose k cards and place them around in any order to form a circle. He can choose any several consecutive cards the number of which is m(1<=m<=k) to play a magic. The magic is simple that ZCC can get a number x=a1⊕a2...⊕am, which ai means the number on the ith card he chooses. He can play the magic infinite times, but once he begin to play the magic, he can’t change anything in the card circle including the order. ZCC has a lucky number L. ZCC want to obtain the number L~R by using one card circle. And if he can get other numbers which aren’t in the range [L,R], it doesn’t matter. Help him to find the maximal R.
 

Input
The input contains several test cases.The first line in each case contains three integers n, k and L(k≤n≤20,1≤k≤6,1≤L≤100). The next line contains n numbers means the numbers on the n cards. The ith number a[i] satisfies 1≤a[i]≤100. You can assume that all the test case generated randomly.
 

Output
For each test case, output the maximal number R. And if L can’t be obtained, output 0.
 

Sample Input
4 3 1 2 3 4 5
 

Sample Output
7
Hint
⊕ means xor
 

题意:有N张牌。每张牌都有其权值ai。然后有一个幸运数L。从N个数取K个数围城一个圈,顺序任意。然后可以这个魔术师可以从这k张牌中取连续的任意张牌得到一个数值h=a1^a2^a3...如果他想要[L,R]这个范围的值都能取到,问R最大是多少。

题解:用二进制状态把取出k的多种情况存入sta数组中。然后去模拟找出最大的R。TLE.

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <queue>
#include <map>
#include <stack>
#include <list>
#include <vector>
using namespace std;
#define LL __int64
LL sta[100010];
int a[50];
int main()
{
	int n,m,i,j,k,i1,i2,i3,i4,i5,i6,L;
	while (3==scanf("%d%d%d",&n,&m,&L))
	{
		memset(sta,0,sizeof(sta));
		memset(a,0,sizeof(a));
		LL t=0,s;
		for (i=0;i<n;i++)
			scanf("%d",&a[i]);
		if (m==1) 
		{
			for (i=0;i<n;i++)
				sta[++t]=1<<i;
		}
		else if (m==2)
		{
			for (i=0;i<n-1;i++)
				for (i1=0;i1<n-(i+1);i1++)
				{
					s=(1<<(i+i1+1))+(1<<i1);
					sta[++t]=s;
				}
		}
		else if (m==3)
		{
			for (i=0;i<n-2;i++)
				for (j=0;j<n-(i+1)-1;j++)
					for (k=0;k<n-2-i-j;k++)
					{
					    s=(1<<(i+k+j+2))+(1<<(j+k+1))+(1<<k);
						sta[++t]=s;
					}
		}
		else if (m==4)
		{
			for (i=0;i<n-3;i++)
			for (i1=0;i1<n-(i+1)-2;i1++)
			for (i2=0;i2<n-i-i1-3;i2++)
			for (i3=0;i3<n-i1-i2-i-3;i3++)
			{
				s=(1<<(i+i1+i2+i3+3))+(1<<(i1+i2+i3+2))+(1<<(i2+i3+1))+(1<<i3);
				sta[++t]=s;
			}	
		}
		else if (m==5)
		{
			for (i=0;i<n-3;i++)
			for (i1=0;i1<n-(i+1)-2;i1++)
			for (i2=0;i2<n-i-i1-3;i2++)
			for (i3=0;i3<n-i1-i2-i-4;i3++)
			for (i4=0;i4<n-i1-i2-i3-i-4;i4++)
			{
				s=(1<<(i+i1+i2+i3+i4+4))+(1<<(i1+i2+i3+i4+3))+(1<<(i2+i3+i4+2))+(1<<(i3+i4+1))+(1<<(i4));
				sta[++t]=s;
			}	
		}
		else
		{
			for (i=0;i<n-3;i++)
			for (i1=0;i1<n-(i+1)-2;i1++)
			for (i2=0;i2<n-i-i1-3;i2++)
			for (i3=0;i3<n-i1-i2-i-4;i3++)
			for (i4=0;i4<n-i1-i2-i3-i-5;i4++)
			for (i5=0;i5<n-i-i1-i2-i3-i4-5;i5++)
			{
				s=(1<<(i+i1+i2+i3+i4+i5+5))+(1<<(i1+i2+i3+i4+i5+4))+(1<<(i2+i3+i4+i5+3))+(1<<(i3+i4+i5+2))+(1<<(i4+i5+1))+(1<<i5);
				sta[++t]=s;
			}	
		}
		/*cout<<t<<endl;
		for (i=1;i<=t;i++)
			cout<<sta[i]<<endl;*/
		int ss[50],ans=0;
		memset(ss,0,sizeof(ss));
		for (i=1;i<=t;i++)
		{
			map<int,int>mp;
			int l=0;
			for (j=0;j<n;j++)
				if ((1<<j) & sta[i])
					ss[l++]=j;        //序列出来了  cout<<ss<<endl;
			sort(ss,ss+l);
			do
    		{
        		/*for (i=0;i<m;i++)
        			printf("%d ",a[ss[i]]);
        		cout<<endl;*/
        		mp.clear();
        		int s1[50];
        		memset(s1,0,sizeof(s1));
        		for (i1=0;i1<m;i1++)
        		{
        			s1[i1]=s1[i1+m]=a[ss[i1]];
        			mp[s1[i1]]=1;
        		}
        		for (i1=0;i1<m;i1++)
        		{
        			int h=s1[i1];
        			for (j=i1+1;j<i1+m;j++)
        			{
        				h=h^s1[j];
        				mp[h]=1;
        			}
        		}
        		int h=L;
        		while (mp[h]) h++;
        		if (h!=L && h-1>ans) ans=h-1; 
    		}while (next_permutation(ss, ss+l));
		}
		cout<<ans<<endl;
	}
	return 0;
}



评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值