题意:给出8个顶点的坐标,每个顶点的x,y,z值被打乱了。问是否这8个顶点构成一个立方体,能的话就输出YES,并按照顺序输出8个顶点坐标。否则输出NO.
题解思路:首先每个顶点有6种状态,共8个点,所以枚举6的8次方个状态。用next_permutation枚举。然后进行判断。有两点重合肯定不是立方体,然后以一点到另外7点的距离是有规律的。前三个相等,中间三个相等,最后一个。3 3 1 状态。(我这里是距离的平方)。然后以两点到另外6个点构成的三角形要么是直角三角形要么是等边三角形。如果条件都满足的话那么这八个顶点肯定能组成立方体了。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <queue>
#include <map>
#include <stack>
#include <list>
#include <vector>
#include <ctime>
#define LL __int64
#define EPS 1e-8
using namespace std;
LL a[10][4];
double dis(LL x[3],LL y[3])
{
return (x[0]-y[0])*(x[0]-y[0])+(x[2]-y[2])*(x[2]-y[2])+(x[1]-y[1])*(x[1]-y[1]);
}
void DFS(int k)
{
if (k!=8)
{
sort(a[k],a[k]+3);
do
{
DFS(k+1);
}while(next_permutation(a[k],a[k]+3));
}
else
{
double f[10];
for (int i=1;i<8;i++)
for (int j=i+1;j<=8;j++)
if (dis(a[i],a[j])==0) return;
for (int i=2;i<=8;i++)
f[i-2]=dis(a[1],a[i]);
sort(f,f+7);
int flag=1;
if (f[0]<=EPS) return;
if (f[0]==f[1] && f[1]==f[2] && f[3]==f[4] && f[4]==f[5] && 2*f[2]==f[3] && f[6]==f[5]+f[0])
flag=0;
if (flag==1) return;
double g[3];
g[0]=dis(a[1],a[2]);
flag=0;
for (int i=3;i<=8;i++)
{
g[1]=dis(a[1],a[i]);
g[2]=dis(a[2],a[i]);
sort(g,g+3);
if (g[0]+g[1]!=g[2]&& (g[0]!=g[1] && g[1]!=g[2]))
{
flag=1;
break;
}
}
if (flag) return;
puts("YES");
for (int i=1;i<=8;i++)
printf("%I64d %I64d %I64d\n",a[i][0],a[i][1],a[i][2]);
exit(0);
}
}
int main()
{
for (int i=1;i<=8;i++)
scanf("%I64d%I64d%I64d",&a[i][0],&a[i][1],&a[i][2]);
DFS(1);
puts("NO");
return 0;
}