#Java #动态规划
Feeling and experiences:
判断子序列:力扣题目链接
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"
是"abcde"
的一个子序列,而"aec"
不是)。
进阶:
如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?
示例 1:
输入:s = "abc", t = "ahbgdc" 输出:true
这里,可以用到双指针的解法:
class Solution {
public boolean isSubsequence(String s, String t) {
int m = s.length();
int n = t.length();
int i = 0,j = 0;
while(i < m&&j<n){
if(s.charAt(i)==t.charAt(j)){
i++;
}
j++;
}
if(i == m){
return true;
}
return false;
}
}
这种方法较为简单,当然也可以用动态规划的写法:
class Solution {
public boolean isSubsequence(String s, String t) {
// 创建dp数组,表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
int[][] dp = new int[s.length() + 1][t.length() + 1];
// 初始化:默认一行一列都为0
for (int i = 0; i <= s.length(); i++) {
dp[i][0] = 0;
}
for (int j = 0; j <= t.length(); j++) {
dp[0][j] = 0;
}
for (int i = 1; i <= s.length(); i++) {
for (int j = 1; j <= t.length(); j++) {
// 判断字符是否相等
if (s.charAt(i - 1) == t.charAt(j - 1)) {
// 如果相等,累积前面的匹配次数
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
// 否则,取上方的值
dp[i][j] = dp[i][j - 1];
}
}
}
// 判断是否整个s都是t的子序列
return dp[s.length()][t.length()] == s.length();
}
}
定义dp数组:
dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
从这张图解中,就可以很好理解了(来自代码随想录):
不同的子序列:力扣题目链接
给你两个字符串 s
和 t
,统计并返回在 s
的 子序列 中 t
出现的个数,结果需要对 10e9 + 7 取模。
示例 1:
输入:s = "rabbbit", t = "rabbit"输出
:3
解释: 如下所示, 有 3 种可以从 s 中得到"rabbit" 的方案
。rabbbit
rabbbit
rabbbit
动态规划:
public class Solution {
public int numDistinct(String s, String t) {
// 创建二维数组dp,dp[i][j]表示s的前i个字符组成的子串中t的前j个字符组成的子串出现的次数
int[][] dp = new int[s.length() + 1][t.length() + 1];
// 初始化:对于任意的i,s的前i个字符组成的子串中t的前0个字符组成的子串都只有一种情况,即空串
for (int i = 0; i < s.length() + 1; i++) {
dp[i][0] = 1;
}
// 遍历s和t的所有可能的子串组合
for (int i = 1; i < s.length() + 1; i++) {
for (int j = 1; j < t.length() + 1; j++) {
// 如果s的第i个字符等于t的第j个字符
if (s.charAt(i - 1) == t.charAt(j - 1)) {
// dp[i][j]可以由两部分组成:
// 1. 使用s的前i-1个字符组成的子串中t的前j-1个字符组成的子串出现的次数,即dp[i-1][j-1]
// 2. 使用s的前i-1个字符组成的子串中t的前j个字符组成的子串出现的次数,即dp[i-1][j]
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
// 如果s的第i个字符不等于t的第j个字符,dp[i][j]只能由s的前i-1个字符组成的子串中t的前j个字符组成的子串出现的次数得到,即dp[i-1][j]
dp[i][j] = dp[i - 1][j];
}
}
}
// 返回s的前s.length()个字符组成的子串中t的前t.length()个字符组成的子串出现的次数
return dp[s.length()][t.length()];
}
}
-
定义状态: 我们定义二维数组
dp[i][j]
表示字符串s
的前i
个字符组成的子串中,字符串t
的前j
个字符组成的子串出现的次数。 -
初始化: 对于任意
i
,s
的前i
个字符组成的子串中,t
的前 0 个字符组成的子串都只有一种情况,即空串。因此,我们将dp[i][0]
初始化为 1。 -
i
表示考虑的是字符串s
的前i
个字符,而不包括第i
个字符。这是因为我们在状态转移的过程中,通常是通过考虑第i
个字符的情况来更新状态,而不是将第i
个字符直接加入。考虑状态转移方程的逻辑,例如在此问题中:
- 如果
s
的第i
个字符等于t
的第j
个字符,那么dp[i][j]
可以由两部分组成:- 使用
s
的前i-1
个字符组成的子串中t
的前j-1
个字符组成的子串出现的次数,即dp[i-1][j-1]
。 - 使用
s
的前i-1
个字符组成的子串中t
的前j
个字符组成的子串出现的次数,即dp[i-1][j]
。
- 使用
如果 s
的第 i
个字符不等于 t
的第 j
个字符,那么 dp[i][j]
只能由 s
的前 i-1
个字符组成的子串中 t
的前 j
个字符组成的子串出现的次数得到,即 dp[i-1][j]
。
代码随想录中的图解:
都来此事,眉间心上,无计相回避。
Fighting!