实测告诉你:GROMACS 的最佳 CPU 核数是多少?

前几天我写过一期内容,专门讲 GROMACS 线程数太多会导致 GPU 调用效率下降,甚至出现 GPU 根本不工作的情况。结果这一说法引来不少反对声音——当然,主要集中在小红书上,而公众号平台上的反馈相对还是比较中立的。

小红书上那些人一个个言之凿凿地说:“你这是胡扯!根本不存在这种情况!只要设置了 -nb gpu 参数,GROMACS 就一定会用显卡加速。”

Image

Image

说实话,我当时看了真是挺无语的。

我写那期内容的初衷,其实是为了给遇到这种相对小众问题的朋友提供一种思路和解决办法。可惜这些质疑者往往只是凭着自己那点有限的实操经验,就断言各种违背实际情况的结论,甚至把常识当成铁律来否认他人的测试结果。

为了回击这种质疑,我觉得有必要系统地探索一下 GROMACS 的 CPU 线程数与 GPU 调用效率之间的关系。下面的图和表格,就是我基于实际测试得出的结果:

Image

上图的详细数据见下表:

Image

从上面的结果中我们可以直观地看出:

  • ①当 CPU 核数较少时,比如 1 到 4 个核,GPU 的利用率非常低,仅有 7% 到 15%,模拟速率也不高,仅几十到一百多 ns/d。这说明在这种情况下,模拟速度主要受限于 CPU 核数太少,无法为 GPU 提供足够的数据并行度,从而导致 GPU 加速效果不明显。

  • ②随着 CPU 核数增加到中等水平,大约 8 到 16 个核,GPU 利用率逐渐升高,达到 26% 到 36%,模拟速率也显著提升,最高可以达到约 275 ns/d。此时,CPU 提供的数据量和并行能力已经足够支撑 GPU,有效提升了整体模拟性能。

  • ③然而,当 CPU 核数进一步增加到 20 到 40 核时,GPU 利用率虽维持在 32% 到 42% 的区间,但模拟速率并没有继续提升,反而出现波动,甚至在某些配置下下降,例如在 20 核时掉到 243 ns/d。这表明增加 CPU 核数不再带来额外加速,相反,由于通信和调度开销增加,性能开始出现下降和不稳定的情况。

  • ④当线程数超过 48 核,模拟速率明显下降,系统几乎进入“过度并行”状态,线程之间的竞争和调度开销远大于计算收益,进一步限制了性能提升。

  • ⑤更极端的情况是,当使用 88 到 128 核时,GPU 利用率直接降到 0%,模拟速率几乎停滞,不到 1 ns/d,说明任务无法有效并行,过多的线程不仅没有加速作用,反而阻塞了 GPU 的任务执行,导致整体性能彻底崩溃。

需要注意的是,尽管上述测试结果可以作为参考,各位也不必完全奉为标准。每个人使用的 GROMACS 系统平台不同,编译工具版本、GROMACS 版本号以及硬件搭配也存在差异,因此实际结果可能与我的测试有所出入。不过,这种性能变化的趋势应该是相对共通的。实际使用时,可以选择一个“大差不差”的 CPU 核数配置,既保证模拟速度,又尽量少占用 CPU 资源,从而不影响同时进行的其他任务。

Image

不过话说回来,为什么会有这么多相反的说法呢?我猜大部分人的设备总 CPU 线程数可能都不超过 64 个(对应上图红色区域的部分),在这个范围内,GPU 调用效率几乎不会明显下降。这就容易让人产生一种错觉:好像 -ntomp 参数根本不重要,因为从来不设置也没啥影响。久而久之,这种错觉就被当作“真理”传播开来了。

Image

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

药研猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值