计算判断两条线是否垂直,平行,相交,求相交点坐标

这篇博客探讨了平面直角坐标系中两条平行线的斜率关系,以及如何通过编程计算一条直线与另一条垂直线的交点坐标。内容包括平行线斜率相等的条件,垂直线斜率互为负倒数的性质,并提供了JavaScript代码示例来求解移动点与固定点连线的垂足坐标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

平面内两条线平行条件:


平行线的k斜率相等: l1: y= kx+b;     l2: y =kx+c 


两条互相垂直的直线,其斜率是互为负倒数.


即 k1=-1/k2.
或 k1·k2=-1.

相交点坐标



a为跟随移动的点,c为固定点,move为移动点,求过一点d与直线垂直的交点?
ps:
y = kx + b , 已知两点求ac bc所在直线方程
    y = -x/k +b2 直线垂线方程
        let k1 = (a.y-c.y)/(a.x- c.x);
        let b1 = c.y-(a.y-c.y)/(a.x- c.x)*c.x;
        let b2 = move.y + move.x/k1
        let d = {};
        d.x = (b2/k1 - b1/k1)/(1+(1/Math.pow(k1,2)));
        d.y = k1*d.x+b1;
以上方式是也是对已知一固定点c,c两端延伸出两条线段并且垂直,move点跟随鼠标移动,那么未知点有两个a和b以上求出了d,即是a移动后的点新位置坐标那么b怎么求,同理如下:
        // 求 e
        let k2 = (b.y-c.y)/(b.x- c.x);
        let b3 = c.y-(b.y-c.y)/(b.x- c.x)*c.x;
        let b4 = move.y + move.x/k2
        let e = {};
        e.x = (b4/k2 - b3/k2)/(1+(1/Math.pow(k2,2)));
        e.y = k2*e.x+b3;
实践可用靠谱
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值