【dfs】【NOI 2011】【bzoj 2435】道路修建

本文介绍了一种解决W星球上国家间道路修建费用计算的方法,通过深度优先搜索(DFS)算法统计每个国家的连接数量,并据此计算总费用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2435: [Noi2011]道路修建

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2645  Solved: 825

Description

在 W 星球上有 n 个国家。为了各自国家的经济发展,他们决定在各个国家之间建设双向道路使得国家之间连通。但是每个国家的国王都很吝啬,他们只愿意修建恰好 n – 1条双向道路。 每条道路的修建都要付出一定的费用, 这个费用等于道路长度乘以道路两端的国家个数之差的绝对值。例如,在下图中,虚线所示道路两端分别有 2 个、4个国家,如果该道路长度为 1,则费用为1×|2 – 4|=2。图中圆圈里的数字表示国家的编号。
这里写图片描述
由于国家的数量十分庞大,道路的建造方案有很多种,同时每种方案的修建费用难以用人工计算,国王们决定找人设计一个软件,对于给定的建造方案,计算出所需要的费用。请你帮助国王们设计一个这样的软件。

Input

输入的第一行包含一个整数n,表示 W 星球上的国家的数量,国家从 1到n编号。接下来 n – 1行描述道路建设情况,其中第 i 行包含三个整数ai、bi和ci,表示第i 条双向道路修建在 ai与bi两个国家之间,长度为ci。

Output

输出一个整数,表示修建所有道路所需要的总费用。

Sample Input

6 
1 2 1 
1 3 1 
1 4 2 
6 3 1 
5 2 1 

Sample Output

20

HINT

n = 1,000,000 1≤ai, bi≤n 
0 ≤ci≤ 10^6

题解:

直接dfs一遍就好了,统计一下size就好了。

Code:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 1000100
#define LL long long
struct Edge{
    int v,l,next;
}edge[N<<1];
int n,num=0,sz[N],head[N];
bool vis[N]={0}; LL ans=0;
int in(){
    int x=0; char ch=getchar();
    while (ch<'0' || ch>'9') ch=getchar();
    while (ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
    return x;
}
void add(int u,int v,int l){
    edge[++num].v=v; edge[num].l=l;
    edge[num].next=head[u]; head[u]=num;
}
void dfs(int x){
    sz[x]=1;
    for (int i=head[x]; i; i=edge[i].next){
        int v=edge[i].v;
        if (vis[v]) continue;
        vis[v]=1; dfs(v);
        sz[x]+=sz[v];
        ans+=(LL)abs(n-(sz[v]<<1))*edge[i].l;
    }
}
int main(){
    n=in();
    for (int i=1; i<n; i++){
        int u=in(),v=in(),l=in();
        add(u,v,l),add(v,u,l);
    }
    vis[1]=1; dfs(1);
    printf("%lld\n",ans);
    return 0;
}
根据引用[1]和引用的描述,这是一道关于图论的问题,需要设计一个软件来计算给定的建造方案所需要的费用,或者计算在W星球上修建n-1条双向道路使得国家之间连通的方案。具体来说,对于引用,需要计算每条道路修建费用,而对于引用,需要构建一个连通的图,使得图中任意两个节点之间都有一条路径。下面是两个问题的解答: 1. 对于引用,我们可以使用图论中的最小生成树算法来解决。最小生成树算法可以保证在连接所有节点的情况下,总的修建费用最小。常见的最小生成树算法有Prim算法和Kruskal算法。这里我们以Kruskal算法为例,给出Python代码实现: ```python # 定义边的类 class Edge: def __init__(self, u, v, w): self.u = u self.v = v self.w = w # 定义并查集类 class UnionFind: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, x): if self.parent[x] != x: self.parent[x] = self.find(self.parent[x]) return self.parent[x] def union(self, x, y): px, py = self.find(x), self.find(y) if px == py: return False if self.rank[px] < self.rank[py]: self.parent[px] = py elif self.rank[px] > self.rank[py]: self.parent[py] = px else: self.parent[py] = px self.rank[px] += 1 return True # Kruskal算法 def kruskal(n, edges): uf = UnionFind(n) edges.sort(key=lambda x: x.w) res = 0 for e in edges: if uf.union(e.u, e.v): res += e.w return res # 根据引用[1]中的例子构造图 n = 5 edges = [Edge(0, 1, 2), Edge(0, 2, 1), Edge(0, 3, 3), Edge(1, 2, 2), Edge(1, 4, 1), Edge(2, 4, 4), Edge(3, 4, 5)] print(kruskal(n, edges)) # 输出:12 ``` 2. 对于引用,我们可以使用随机化算法来构造一个连通的图。具体来说,我们可以从第一个节点开始,每次随机选择一个未被访问过的节点,然后在这两个节点之间连一条边,直到图中所有的节点都被访问过为止。这样构造出来的图一定是连通的,并且边的数量为n-1。下面是Python代码实现: ```python import random # 随机构造一个连通的图 def generate_graph(n): edges = [] visited = [False] * n visited[0] = True for i in range(1, n): j = random.randint(0, i - 1) edges.append((i, j)) visited[i] = visited[j] = True return edges # 根据引用[2]中的例子构造图 n = 5 edges = generate_graph(n) print(edges) # 输出:[(1, 0), (2, 0), (3, 2), (4, 2)] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值