机器学习基础之数据集

本文介绍了机器学习中数据集的划分,重点讲解了sklearn库的数据集接口,包括训练测试数据划分API `train_test_split`,以及分类和回归数据集的加载方法。sklearn.datasets提供了如`load_*`和`fetch_*`等函数,用于获取不同规模的数据集,并详细阐述了返回数据的结构。最后,举例说明了分类数据集`fetch_20newsgroups`和回归数据集的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、数据集划分

2、sklearn数据集接口介绍

3、sklearn分类数据集

4、 sklearn回归数据集


1、数据集划分

机器学习一般的数据集会划分为两个部分:

        训练数据:用于训练,构建模型

        测试数据:在模型检验时使用,用于评估模型是否有效

2、sklearn数据集接口介绍

数据集划分API:sklearn.model_selection.train_test_split

sklearn.datasets

         加载获取流行数据集

        datasets.load_*()

                获取小规模数据集,数据包含在datasets里

        datasets.fetch_*(data_home=None)

                获取大规模数据集,需要从网络上下载,函数的第一个参数是data_home,表示数据集  &n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值