
大数据治理
文章平均质量分 94
数据治理是确保组织中的数据质量、可用性、一致性和安全性的全面管理过程。它涉及策略、标准、流程和工具的制定与实施,以支持有效的数据使用和决策制定。以下是数据治理体系架构图谱分类及解析。内涵15张数据治理高质量架构图谱,数据治理流程图,数据治理平台图,数据治理技术图,数据治理应用架构图,大数据治理平台等
34号树洞
の,记点啥吧~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
十五、数据治理体系架构
数据治理体系架构图清晰地展示了数据治理的整体框架和核心内容,有助于企业或组织更好地理解和实施数据治理。- 流程清晰:清晰地展示了数据治理的整体流程。- 阶段划分明确:将数据治理分为三个主要阶段,方便理解和实施。- 内容全面:涵盖了数据治理的各个方面,包括元数据、标准、质量、模型和应用。原创 2025-02-28 10:00:00 · 1187 阅读 · 0 评论 -
十四、数据全域治理平台架构
数据全域治理平台架构图清晰地展示了数据治理的整体框架和核心功能,有助于企业或组织更好地理解和实施数据治理。- 模块化设计:将数据治理分为多个模块,每个模块负责特定的功能。- 清晰的流程:展示了数据治理的整体流程。- 全面的功能:涵盖了数据治理的各个方面,包括标准、元数据、资产、质量、运维和运营。原创 2025-02-28 09:00:00 · 805 阅读 · 0 评论 -
十三、数据治理总体架构/数据资产管理平台-功能架构
数据治理总体架构/数据资产管理平台-功能架构图原创 2025-02-27 10:00:00 · 2291 阅读 · 0 评论 -
十二、大数据治理架构
大数据治理架构图清晰地展示了数据治理的各个方面,包括组织、业务、消费和能力。通过对该图的理解,您可以更好地把握数据治理的整体框架和关键要素,从而有效地开展数据治理工作。暂时无法在飞书文档外展示此内容。原创 2025-02-27 09:00:00 · 1651 阅读 · 0 评论 -
十一、大数据治理平台总体功能架构
大数据治理平台总体功能架构,核心重点是建立健全大数据资产管理框架,确保数据质量、安全性、可访问性和合规性。原创 2025-02-26 11:56:38 · 590 阅读 · 0 评论 -
十、大数据资源平台功能架构
大数该图代表一个综合大数据资源平台,旨在收集、处理、管理和共享数据,用于城市管理、政府服务和公共部门运营等各种用途。它强调数据的安全性、质量和可访问性。根据数据的类型和访问级别对数据进行分类(例如,非结构化数据、实时数据、应用程序租户、共享层、标准层、数据湖)。该平台集成来自各种来源的数据,并促进不同系统之间的数据共享。该平台提供数据分析和可视化工具和服务,以支持明智的决策。该平台满足具有不同需求和访问级别的各种用户的需求。包括查询、文件管理、消息处理、下载等功能。包括批处理、统计分析、控制计算和边缘计算。原创 2025-02-26 11:54:51 · 1367 阅读 · 0 评论 -
九、数据治理架构流程
数据治理架构流程直观地展现了数据治理从数据采集到应用利用的全过程,突出了主数据管理、标准、质量、安全性以及数据整个生命周期的重要性。原创 2025-02-25 11:28:02 · 1163 阅读 · 0 评论 -
八、主数据管理平台架构(MDM)
主数据管理平台架构(MDM)说明了 MDM 系统如何集中、集成和管理来自各种来源的主数据,从而确保整个组织的数据一致性、准确性和可访问性。它突出显示了 MDM 流程中涉及的关键模块和引擎。原创 2025-02-25 11:26:11 · 1270 阅读 · 0 评论 -
五、数据治理平台架构
该架构图展示了一个功能完善的数据资产平台,它涵盖了数据资产管理的各个方面,从数据采集、模型设计、编目到使用和分析。通过该平台,企业可以更好地管理数据资产,提高数据利用效率,并为业务决策提供有力支持。原创 2025-02-22 09:00:00 · 1744 阅读 · 0 评论 -
三、数据治理应用开发整体架构
该架构图展示了一个功能完善、技术先进的数据治理应用开发平台,涵盖了数据治理的各个方面。通过该平台,用户可以快速构建数据应用,提升数据价值,实现业务创新。原创 2025-02-19 11:29:32 · 1216 阅读 · 0 评论 -
七.智慧城市数据治理平台架构
该架构图展示了一个功能完善、技术先进的智慧城市数据治理平台,涵盖了数据采集、治理、存储、共享、应用等各个环节。通过该平台,可以有效地整合城市数据资源,提升数据价值,为智慧城市建设提供有力支撑。原创 2025-02-24 14:10:20 · 1599 阅读 · 0 评论 -
六、数据资产平台功能架构
该架构图展示了一个功能完善的数据资产平台,它涵盖了数据资产管理的各个方面,从数据采集、模型设计、编目到使用和分析。通过该平台,企业可以更好地管理数据资产,提高数据利用效率,并为业务决策提供有力支持。原创 2025-02-22 09:30:00 · 1082 阅读 · 0 评论 -
四、数据湖应用平台架构
数据湖应用平台是一个用于存储、处理和分析大容量、用途数据的平台。它旨在以隐蔽、高效率的方式,为企业提供全面的数据管理和应用能力。核心概念一个集中各种原始格式数据的存储库,包括格式化数据、半格式化数据和非格式化数据。基于数据湖构建的各种数据分析、挖掘和应用服务,例如:数据图表线路商业智能预测分析。原创 2025-02-20 11:08:22 · 1535 阅读 · 0 评论 -
一.数据治理理论架构
数据治理理论架构图描绘了一个由顶层设计、管控机制、核心领域和管理系统四个主要部分组成的数据治理框架。它旨在通过系统化的方法,解决数据治理机制缺失引发的业务和技术问题,并最终提升企业的数据管理水平。核心: 梳理由于数据治理机制匮乏而引发的业务及技术问题,并规划针对不同成熟度业务板块或业务单元的数据治理实施路径。要点:问题导向: 强调数据治理是为了解决实际问题,如数据质量差、数据孤岛、数据安全隐患等。差异化策略: 针对不同业务单元或板块,制定不同的数据治理策略和实施路径,避免“一刀切”。目标明确: 明确数据治理原创 2025-02-17 11:47:48 · 2162 阅读 · 0 评论 -
二.数据治理流程架构
它旨在通过规范化的流程和技术手段,提升数据质量,保障数据安全,并最终实现数据的有效利用。数据治理的主线,贯穿数据的整个生命周期,包括采集、存储、处理、应用、共享和销毁等环节。规定了数据质量的评估标准和指标,用于衡量数据的准确性、完整性、一致性、时效性等。规定了描述数据的数据(即元数据)的标准,包括元数据的定义、分类、编码等。数据治理的基础,为数据的采集、存储、处理和应用提供统一的标准和规范。规定了数据元素的标准,包括数据元素的名称、类型、长度、取值范围等。对数据进行标准化处理,包括元数据标准化和数据转换。原创 2025-02-17 11:48:24 · 1133 阅读 · 0 评论