使用 Python + YOLOv8 + 摄像头 实现茭白良品识别与质检系统(附完整代码)


🧠 使用 Python + YOLOv8 + 摄像头 实现茭白良品识别与质检系统(附完整代码)


📌 前言

随着计算机视觉技术的发展,越来越多的农业和工业生产场景开始引入智能视觉检测系统。本文将详细介绍如何使用 Python + YOLOv8 + 摄像头 构建一个完整的 山东茭白良品/差品识别系统,并实现实时检测、分类、质量判断与结果反馈。

本项目主要实现以下功能:

  1. 区分“茭白”与“非茭白”的果蔬;
  2. 识别山东茭白的良品与差品;
  3. 实时显示良品率百分比,若低于 80% 则标记为差品批次;
  4. 将每次扫描结果可视化,并反馈给 PLC 控制系统;
  5. 提供标注、训练、检测全流程脚本。

🔧 技术栈

  • 编程语言:Python
  • 图像识别:YOLOv8(Ultralytics)
  • 图像处理:OpenCV
  • 数据标注工具:LabelImg / CVAT
  • 摄像头输入:USB / 工业相机
  • 可选通信模块:串口 / Modbus / OPC UA(用于连接 PLC)

🗂️ 一、数据准备与标注

1. 标注工具推荐

2. 类别定义

ID名称
0not_jiaobai
1good_jiaobai
2bad_jiaobai

每张图片对应一个 .txt 文件,格式如下:

class_id x_center y_center width height

3. 数据集结构示例

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/
└── data.yaml

🏋️‍♂️ 二、模型训练

1. 安装依赖

pip install ultralytics torch torchvision

2. data.yaml 示例

train: dataset/images/train
val: dataset/images/val

nc: 3
names: ['not_jiaobai', 'good_jiaobai', 'bad_jiaobai']

3. 训练脚本 train.py



from ultralytics import YOLO

# 加载预训练模型(可选:yolov8n/s/m/l/x)
model = YOLO('yolov8n.pt')  # 小型模型,适合入门和快速训练

# 开始训练
results = model.train(
    data='data.yaml',              # 数据配置文件路径
    epochs=100,                    # 总共训练轮数
    imgsz=640,                     # 图像尺寸(像素)
    batch=16,                      # 批次大小(根据你的GPU内存调整)
    name='jiaobai_quality_detector',   # 模型保存的文件夹名
    device=0 if torch.cuda.is_available() else 'cpu',  # 自动选择GPU或CPU
    exist_ok=True,                 # 若存在同名项目,覆盖它
    workers=4,                     # 数据加载线程数
    optimizer='AdamW',             # 优化器选择
    lr0=0.001,                     # 初始学习率
    pretrained=True,               # 是否使用预训练权重
    save_period=5,                 # 每隔多少个 epoch 保存一次模型
    project='runs/train'           # 训练结果保存路径
)

# 输出训练指标
print("训练完成!")
print("结果保存在:", results.save_dir)

训练完成后,模型权重会保存在:

runs/train/jiaobai_quality_detector/weights/best.pt

🎥 三、实时检测与结果显示

1. 检测脚本 detect_realtime.py

import cv2
from ultralytics import YOLO

model = YOLO('runs/train/jiaobai_quality_detector/weights/best.pt')
cap = cv2.VideoCapture(0)

WINDOW_NAME = "Jiaobai Quality Detection"
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_AUTOSIZE)

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break

    results = model(frame)
    total_count = 0
    good_count = 0

    for result in results:
        boxes = result.boxes.cpu().numpy()
        names = result.names

        for box in boxes:
            x1, y1, x2, y2 = box.xyxy[0].astype(int)
            cls = int(box.cls[0])
            label = names[cls]
            conf = box.conf[0]

            color = (0, 255, 0)
            if label == 'good_jiaobai':
                good_count += 1
                total_count += 1
            elif label == 'bad_jiaobai':
                total_count += 1
                color = (0, 0, 255)

            cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
            cv2.putText(frame, f"{label} {conf:.2f}", (x1, y1 - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)

    if total_count > 0:
        quality_rate = (good_count / total_count) * 100
        status_text = "Good Batch" if quality_rate >= 80 else "Bad Batch"
        status_color = (0, 255, 0) if quality_rate >= 80 else (0, 0, 255)

        cv2.putText(frame, f"Quality Rate: {quality_rate:.2f}%", (10, 30),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
        cv2.putText(frame, status_text, (10, 70),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.9, status_color, 2)

    cv2.imshow(WINDOW_NAME, frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

🔌 四、PLC通信(可选)

示例:串口通信发送信号

import serial

try:
    plc = serial.Serial('COM3', baudrate=9600, timeout=1)
except Exception as e:
    print("无法连接 PLC:", e)
    plc = None

if plc and plc.is_open:
    try:
        plc.write(b'GOOD\n')  # 发送良品信号
    except Exception as e:
        print("发送失败:", e)

📸 五、摄像头选择建议(性价比高)

参数推荐指标
分辨率至少 720p,推荐 1080p
帧率≥ 30fps,推荐 60fps
光照适应性支持低光环境
安装方式支持固定支架或云台控制

✅ 推荐型号

型号特点
罗技 C920/C930e1080p@30fps,USB 接口
海康威视 DS-2CD2042WD-IIP 摄像头,支持夜视、防水
Basler ace acA1600-35uc工业相机,高速抓拍

📦 六、项目打包模板(建议)

如果你需要我为你打包一个完整的 ZIP 文件,包含:

  • 模型文件(best.pt)
  • 数据集结构模板
  • 标注工具使用说明
  • 训练 + 检测脚本
  • requirements.txt
  • README.md
  • 示例图像

请告诉我,我可以为你生成并提供下载链接!


🧠 七、拓展方向

  • 添加 GUI 界面(PyQt / Tkinter)
  • 多线程优化提升性能
  • 部署到树莓派 / Jetson Nano
  • 自动剔除机制(气缸 + 继电器)
  • 日志记录与数据分析(CSV / SQLite)
  • 支持多品种果蔬识别

✅ 结语

通过本文的学习,你可以从零开始搭建一个完整的 茭白良品识别与质检系统,涵盖图像标注、模型训练、实时检测、结果可视化与 PLC 通信等关键环节。

如果你希望我帮你进一步开发 GUI 界面、边缘部署版本或定制化模型,请继续留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿熊跃晖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值