🧠 使用 Python + YOLOv8 + 摄像头 实现茭白良品识别与质检系统(附完整代码)
📌 前言
随着计算机视觉技术的发展,越来越多的农业和工业生产场景开始引入智能视觉检测系统。本文将详细介绍如何使用 Python + YOLOv8 + 摄像头 构建一个完整的 山东茭白良品/差品识别系统,并实现实时检测、分类、质量判断与结果反馈。
本项目主要实现以下功能:
- 区分“茭白”与“非茭白”的果蔬;
- 识别山东茭白的良品与差品;
- 实时显示良品率百分比,若低于 80% 则标记为差品批次;
- 将每次扫描结果可视化,并反馈给 PLC 控制系统;
- 提供标注、训练、检测全流程脚本。
🔧 技术栈
- 编程语言:Python
- 图像识别:YOLOv8(Ultralytics)
- 图像处理:OpenCV
- 数据标注工具:LabelImg / CVAT
- 摄像头输入:USB / 工业相机
- 可选通信模块:串口 / Modbus / OPC UA(用于连接 PLC)
🗂️ 一、数据准备与标注
1. 标注工具推荐
-
LabelImg(本地安装)
GitHub 地址:https://github.com/tzutalin/labelImg -
Roboflow Annotate(在线标注)
地址:https://roboflow.com/annotate
2. 类别定义
ID | 名称 |
---|---|
0 | not_jiaobai |
1 | good_jiaobai |
2 | bad_jiaobai |
每张图片对应一个 .txt
文件,格式如下:
class_id x_center y_center width height
3. 数据集结构示例
dataset/
├── images/
│ ├── train/
│ └── val/
├── labels/
│ ├── train/
│ └── val/
└── data.yaml
🏋️♂️ 二、模型训练
1. 安装依赖
pip install ultralytics torch torchvision
2. data.yaml
示例
train: dataset/images/train
val: dataset/images/val
nc: 3
names: ['not_jiaobai', 'good_jiaobai', 'bad_jiaobai']
3. 训练脚本 train.py
from ultralytics import YOLO
# 加载预训练模型(可选:yolov8n/s/m/l/x)
model = YOLO('yolov8n.pt') # 小型模型,适合入门和快速训练
# 开始训练
results = model.train(
data='data.yaml', # 数据配置文件路径
epochs=100, # 总共训练轮数
imgsz=640, # 图像尺寸(像素)
batch=16, # 批次大小(根据你的GPU内存调整)
name='jiaobai_quality_detector', # 模型保存的文件夹名
device=0 if torch.cuda.is_available() else 'cpu', # 自动选择GPU或CPU
exist_ok=True, # 若存在同名项目,覆盖它
workers=4, # 数据加载线程数
optimizer='AdamW', # 优化器选择
lr0=0.001, # 初始学习率
pretrained=True, # 是否使用预训练权重
save_period=5, # 每隔多少个 epoch 保存一次模型
project='runs/train' # 训练结果保存路径
)
# 输出训练指标
print("训练完成!")
print("结果保存在:", results.save_dir)
训练完成后,模型权重会保存在:
runs/train/jiaobai_quality_detector/weights/best.pt
🎥 三、实时检测与结果显示
1. 检测脚本 detect_realtime.py
import cv2
from ultralytics import YOLO
model = YOLO('runs/train/jiaobai_quality_detector/weights/best.pt')
cap = cv2.VideoCapture(0)
WINDOW_NAME = "Jiaobai Quality Detection"
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_AUTOSIZE)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = model(frame)
total_count = 0
good_count = 0
for result in results:
boxes = result.boxes.cpu().numpy()
names = result.names
for box in boxes:
x1, y1, x2, y2 = box.xyxy[0].astype(int)
cls = int(box.cls[0])
label = names[cls]
conf = box.conf[0]
color = (0, 255, 0)
if label == 'good_jiaobai':
good_count += 1
total_count += 1
elif label == 'bad_jiaobai':
total_count += 1
color = (0, 0, 255)
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
cv2.putText(frame, f"{label} {conf:.2f}", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
if total_count > 0:
quality_rate = (good_count / total_count) * 100
status_text = "Good Batch" if quality_rate >= 80 else "Bad Batch"
status_color = (0, 255, 0) if quality_rate >= 80 else (0, 0, 255)
cv2.putText(frame, f"Quality Rate: {quality_rate:.2f}%", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
cv2.putText(frame, status_text, (10, 70),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, status_color, 2)
cv2.imshow(WINDOW_NAME, frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
🔌 四、PLC通信(可选)
示例:串口通信发送信号
import serial
try:
plc = serial.Serial('COM3', baudrate=9600, timeout=1)
except Exception as e:
print("无法连接 PLC:", e)
plc = None
if plc and plc.is_open:
try:
plc.write(b'GOOD\n') # 发送良品信号
except Exception as e:
print("发送失败:", e)
📸 五、摄像头选择建议(性价比高)
参数 | 推荐指标 |
---|---|
分辨率 | 至少 720p,推荐 1080p |
帧率 | ≥ 30fps,推荐 60fps |
光照适应性 | 支持低光环境 |
安装方式 | 支持固定支架或云台控制 |
✅ 推荐型号
型号 | 特点 |
---|---|
罗技 C920/C930e | 1080p@30fps,USB 接口 |
海康威视 DS-2CD2042WD-I | IP 摄像头,支持夜视、防水 |
Basler ace acA1600-35uc | 工业相机,高速抓拍 |
📦 六、项目打包模板(建议)
如果你需要我为你打包一个完整的 ZIP 文件,包含:
- 模型文件(best.pt)
- 数据集结构模板
- 标注工具使用说明
- 训练 + 检测脚本
- requirements.txt
- README.md
- 示例图像
请告诉我,我可以为你生成并提供下载链接!
🧠 七、拓展方向
- 添加 GUI 界面(PyQt / Tkinter)
- 多线程优化提升性能
- 部署到树莓派 / Jetson Nano
- 自动剔除机制(气缸 + 继电器)
- 日志记录与数据分析(CSV / SQLite)
- 支持多品种果蔬识别
✅ 结语
通过本文的学习,你可以从零开始搭建一个完整的 茭白良品识别与质检系统,涵盖图像标注、模型训练、实时检测、结果可视化与 PLC 通信等关键环节。
如果你希望我帮你进一步开发 GUI 界面、边缘部署版本或定制化模型,请继续留言交流!