摘要:
记录了昇思MindSpore AI框架用循环对抗生成网络模型CycleGAN实现图像匹配的方法、步骤。包括环境准备、数据集下载、数据加载和预处理、构建生成器和判别器、优化、模型训练和推理等。
1.模型介绍
1.1模型简介
CycleGAN(Cycle Generative Adversarial Network)
循环对抗生成网络模型
没有配对示例
学习将图像从源域 X 转换到目标域 Y 的方法
应用领域
域迁移Domain Adaptation(图像风格迁移)
同类模型Pix2Pix
要求训练数据成对
现实很难找到
1.2模型结构
CycleGAN 网络
两个镜像对称的GAN网络
结构图:
以苹果和橘子为例
X 苹果
Y 橘子
F 将苹果变橘子的变换生成器
G 将橘子变苹果的变换生成器
DX 苹果判别器
DY 橘子判别器
模型结果
苹果变橘子模型权重
橘子变苹果模型权重
苹果变橘子产生新图像
橘子变苹果产生新图像
模型损失函数
循环一致损失(Cycle Consistency Loss)最重要
循环损失计算过程如图所示:
苹果图片 x --> 生成器G --> 伪橘子
伪橘子 --> 生成器F --> 苹果风
苹果图片x - 苹果风 --> 苹果循环一致损失
反之亦然
橘子图片 y --> 生成器 F --> 伪苹果