解决RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cp

本文介绍如何解决PyTorch中因张量和模型不在同一设备上而导致的运行时错误。通过确保所有操作都在相同的设备上执行,可以避免此类问题。文中提供了具体的调试步骤及修正代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天在把.pt文件转ONNX文件时,遇到此错误。

报错

RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cpu and cuda:0! (when checking argument for argument mat2 in method wrapper_mm)

原因

代码中的Tensor**,一会在CPU中运行,一会在GPU中运行**,所以最好是都放在同一个device中执行。

pytorch有两种模型保存方式

一、保存整个神经网络的的结构信息和模型参数信息,save的对象是网络net

二、只保存神经网络的训练模型参数,save的对象是net.state_dict()

对应两种保存模型的方式,pytorch也有两种加载模型的方式。对应第一种保存方式,加载模型时通过torch.load(‘.pth’)直接初始化新的神经网络对象;对应第二种保存方式,需要首先导入对应的网络,再通过net.load_state_dict(torch.load(‘.pth’))完成模型参数的加载。

解决方案

在报错中寻找错误的哪一行,通过Print语句查看相关参数到底在那里运行

print(参数a.is_cuda,参数a.is_cuda)

然后把它们统一都放在CPU/GPU上就可以。

解决案例

案例1

在这里插入图片描述
报错提示在utils.py 这个文件的问题

index = idx_ range.index_ select(0, reverse_ mapping )

使用print语句检查

print(index .is_cuda,idx_ range.is_cuda)

经过验证发现idx_range在cpu上,index在GPU上,把idx_range放在GPU即可。

  idx_range.to(device)

如果遇到下面问题

NameError: name 'device' is not defined

请在开始加入语句

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

案例2

错误代码

if __name__ == '__main__':
    model = Perception(2, 3, 2).cuda()

    input = torch.randn(4, 2).cuda()
    output = model(input)
    # output = output.cuda()

    label = torch.Tensor([0, 1, 1, 0]).long()
    criterion = nn.CrossEntropyLoss()
    loss_nn = criterion(output, label)
    print(loss_nn)
    loss_functional = F.cross_entropy(output, label)
    print(loss_functional)

解决方案

将用到的Tensor都改为同一个device:Tensor.to(device)

if __name__ == '__main__':
	#添加语句 device = torch.device('cuda:0')以及.to(device)
    device = torch.device('cuda:0')
    model = Perception(2, 3, 2).to(device)

    input = torch.randn(4, 2).to(device)
    output = model(input).to(device)

    label = torch.Tensor([0, 1, 1, 0]).long().to(device)
    criterion = nn.CrossEntropyLoss()
    loss_nn = criterion(output, label).to(device)
    print(loss_nn)
    loss_functional = F.cross_entropy(output, label)
    print(loss_functional)

完整代码:

import torch
from torch import nn
import torch.nn.functional as F

from torch.nn import Linear


class linear(nn.Module):  # 继承nn.Module
    def __init__(self, in_dim, out_dim):
        super(Linear, self).__init__()  # 调用nn.Module的构造函数

        # 使用nn.Parameter来构造需要学习的参数
        self.w = nn.Parameter(torch.randn(in_dim, out_dim))
        self.b = nn.Parameter(torch.randn(out_dim))

    # 在forward中实现前向传播过程
    def forward(self, x):
        x = x.matmul(self.w)
        y = x + self.b.expand_as(x)  # expand_as保证矩阵形状一致

        return y

class Perception(nn.Module):
    def __init__(self, in_dim, hid_dim, out_dim):
        super(Perception, self).__init__()
        self.layer = nn.Sequential(
            nn.Linear(in_dim, hid_dim),
            nn.Sigmoid(),
            nn.Linear(hid_dim, out_dim),
            nn.Sigmoid()
        )
        # self.layer1 = Linear(in_dim, hid_dim)
        # self.layer2 = Linear(hid_dim, out_dim)

    def forward(self, x):
        # x = self.layer1(x)
        # y = torch.sigmoid(x)
        # y = self.layer2(y)
        # y = torch.sigmoid(y)
        y = self.layer(x)
        return y


if __name__ == '__main__':
    device = torch.device('cuda:0')
    model = Perception(2, 3, 2).to(device)

    input = torch.randn(4, 2).to(device)
    output = model(input).to(device)
    # output = output.cuda()

    label = torch.Tensor([0, 1, 1, 0]).long().to(device)
    criterion = nn.CrossEntropyLoss()
    loss_nn = criterion(output, label).to(device)
    print(loss_nn)
    loss_functional = F.cross_entropy(output, label)
    print(loss_functional)

补充

如果遇到错误:Tensor for argument #2 ‘mat1’ is on CPU, but expected it to be on GPU (while checking arguments for addmm)

代表着模型在GPU上进行计算,需要将变量和模型都增加.to(device),都搬到GPU上。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 
g = g.to(device)
 
model=model.to(device)
 

更多Ai资讯:公主号AiCharm
在这里插入图片描述

<think>好的,用户遇到了PyTorch中张量设备不一致的RuntimeError问题,需要解决。首先,我得回忆一下PyTorch中张量设备的概念。PyTorch中的张量可以存储在CPU或GPU上,当进行运算时,所有涉及的张量必须在同一设备上,否则就会报错。 用户提到的错误信息是“RuntimeError: tensors on same device cuda:0 cpu wrapper_CUDA_mm”,这通常是因为在运算时,一个张量在GPU(比如cuda:0),而另一个在CPU上。例如,用户可能在模型训练时,模型被加载到了GPU,但输入数据还在CPU上,或者某些中间张量没有正确转移到GPU。 接下来,解决这个问题的方法应该是确保所有参与运算的张量都在同一设备上。可能需要检查以下几点: 1. 确认模型是否正确转移到了GPU。通常使用model.to('cuda')来实现。 2. 检查输入数据是否也被转移到了GPU。数据加载后,通常需要执行data = data.to('cuda')。 3. 在创建新张量时,如果没有指定设备,可能会默认在CPU上,这时候需要显式指定设备,比如使用torch.tensor(..., device='cuda')。 4. 使用Tensor.to()方法或者Tensor.cuda()来统一设备。 5. 如果某些操作必须在CPU上进行,需要将相关张量移回CPU,但要注意后续操作的一致性。 另外,用户可能需要一个代码示例来展示如何正确设置设备,以及如何处理设备不一致的问题。比如,在模型训练循环中,每个batch的数据都要转移到GPU,同时确保自定义生成的张量也在同一设备上。 还要注意,有时在加载预训练模型时,如果模型是在GPU上保存的,而当前环境没有可用的GPU,也可能导致错误。这时候需要将模型加载到CPU上,或者调整设备设置。 最后,用户可能需要了解如何检查张量的设备属性,比如通过tensor.device来查看当前设备,这有助于调试。同时,使用torch.cuda.is_available()来确认CUDA是否可用,避免在不可用时错误地尝试使用GPU。 总结解决方案的步骤: 1. 统一模型和数据到同一设备。 2. 检查所有中间张量的设备。 3. 使用.device属性进行调试。 4. 在创建新张量时指定设备。 5. 必要时进行设备转换。</think>### PyTorch RuntimeError: 张量设备不一致的解决方案 PyTorch要求参与运算的张量必须位于同一设备(CPU或GPU),当出现类似`RuntimeError: tensors must be on the same device`的错误时,说明存在设备不匹配。以下是逐步解决方案: --- #### **步骤1:确认设备位置** 使用`.device`属性检查张量位置: ```python print(tensor1.device) # 输出结果示例: cpu print(tensor2.device) # 输出结果示例: cuda:0 ``` --- #### **步骤2:统一设备** 将**所有张量**移动到相同设备: ```python # 方法1:使用.to()显式转移 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tensor_cpu = tensor_cpu.to(device) tensor_gpu = tensor_gpu.to(device) # 方法2:直接指定新张量设备 new_tensor = torch.tensor([1,2,3], device=device) ``` --- #### **步骤3:模型与数据对齐** 确保**模型**和**输入数据**位于同一设备: ```python model = MyModel().to(device) # 模型转移至GPU inputs = inputs.to(device) # 数据转移至GPU outputs = model(inputs) # 此时不会报错 ``` --- #### **步骤4:检查自定义操作** 在自定义函数/循环中,**显式指定设备**: ```python def custom_function(x): # 错误示例:新张量默认创建在CPU # bias = torch.tensor([0.1]) # 正确示例:指定设备 bias = torch.tensor([0.1], device=x.device) return x + bias ``` --- #### **常见错误场景** 1. **混合CPU/GPU数据** ```python model.cuda() data = torch.randn(3,3) # 默认在CPU model(data) # 报错:数据在CPU,模型在GPU ``` 2. **加载预训练权重时的设备不匹配** ```python # 错误:GPU保存的模型在CPU环境直接加载 model.load_state_dict(torch.load('model.pth')) # 正确:添加map_location参数 model.load_state_dict(torch.load('model.pth', map_location=device)) ``` --- #### **验证CUDA可用性** 在代码开头添加设备检查: ```python assert torch.cuda.is_available(), "需要GPU支持" device = torch.device('cuda:0') ``` --- ### 关键总结 1. **统一性原则**:模型、输入数据、中间变量必须位于同一设备 2. **显式指定**:创建新张量时使用`device=`参数 3. **验证手段**:通过`.device`属性主动检查张量位置[^1] ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AiCharm

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值