求组合数(扩展欧几里得+费马小定理)

扩展欧几里得:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int mod=1e9+7;
void exgcd(long long a,long long b,long long &x,long long &y)
{
    if(b==0)
    {
        x=1,y=0;
        return ;
    }
    exgcd(b,a%b,x,y);
    long long t=x;
    x=y;
    y=t-a/b*y;

}
int main()
{
    long long n,m;
    scanf("%lld%lld",&n,&m);
    long long ans=1;
    for(long long i=n;i>=n-m+1;i--)
    {
        ans=((ans%mod)*(i%mod))%mod;
    }
    for(long long i=1;i<=m;i++)
    {
        long long x,y;
        exgcd(i,mod,x,y);
        x=(x+mod)%mod;
        ans=((ans%mod)*(x%mod))%mod;
    }
    printf("%lld\n",ans);
    return 0;
}

费马小定理:

#include<iostream>
#include<cstdio>
using namespace std;
const long long mod=1e9+7;
long long ksm(long long a,long long b)
{
    if(b==0) return 1;
    long long ans=ksm(a,b/2);
    ans=((ans%mod)*(ans%mod))%mod;
    if(b%2==1)
    {
        ans=((ans%mod)*(a%mod))%mod;
    }
    return ans;
}
int main()
{
    long long n,m;
    scanf("%lld%lld",&n,&m);
    long long ans=1;
    for(long long i=n;i>=n-m+1;i--)
    {
        ans=((ans%mod)*(i%mod))%mod;
    }
    for(long long i=1;i<=m;i++)
    {
        long long r=ksm(i,mod-2);
        r=(r+mod)%mod;
        ans=((ans%mod)*(r%mod))%mod;
    }
    printf("%lld\n",ans);
    return 0;
}

求欧拉函数:

#include<iostream>
#include<cstdio>
using namespace std;
int p[1000000+10];
int main()
{
    p[1]=1;
    for(int i=2;i<=1000000;i++)
    {
        if(p[i]) continue;
        for(int j=i;j<=1000000;j+=i)
        {
            if(!p[j]) p[j]=j;
            p[j]=p[j]/i*(i-1);
        }
    }
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        printf("%d\n",p[n]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值