LeNet5

注意:卷积核的通道数与输入图像的通道数一致,也就是说卷积核中的每一个通道会与输入图像的对应通道进行卷积操作。但是在LeNet5神经网络中的C3层中有一点不一样,并不是卷积核的每一个通道会与输入图像的对应通道进行卷积,它只是对其中的几个对应通道进行卷积操作。

这里有以下原因:

1)首先可以节省计算量和减少参数数量

2)破坏网络的对称性,由于不同的特征图有不同的输入,所以迫使他们抽取不同的特征

3)不完全的连接机制将连接的数量保持在合理的范围内

注意:Tensorflow定义的padding和上面不一样

padding=’SAME’

out = ceil(in/s)

padding=’VALID’

out = ceil((in-k+1)/s)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值