注意:卷积核的通道数与输入图像的通道数一致,也就是说卷积核中的每一个通道会与输入图像的对应通道进行卷积操作。但是在LeNet5神经网络中的C3层中有一点不一样,并不是卷积核的每一个通道会与输入图像的对应通道进行卷积,它只是对其中的几个对应通道进行卷积操作。
这里有以下原因:
1)首先可以节省计算量和减少参数数量
2)破坏网络的对称性,由于不同的特征图有不同的输入,所以迫使他们抽取不同的特征
3)不完全的连接机制将连接的数量保持在合理的范围内
注意:Tensorflow定义的padding和上面不一样
padding=’SAME’
out = ceil(in/s)
padding=’VALID’
out = ceil((in-k+1)/s)